Properties

Label 8-950e4-1.1-c1e4-0-0
Degree $8$
Conductor $814506250000$
Sign $1$
Analytic cond. $3311.33$
Root an. cond. $2.75423$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4-s − 5·9-s − 14·19-s + 20·29-s − 8·31-s − 5·36-s − 4·41-s + 20·49-s − 2·59-s − 16·61-s − 64-s + 24·71-s − 14·76-s − 8·79-s + 9·81-s − 26·89-s − 4·101-s − 4·109-s + 20·116-s − 44·121-s − 8·124-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + ⋯
L(s)  = 1  + 1/2·4-s − 5/3·9-s − 3.21·19-s + 3.71·29-s − 1.43·31-s − 5/6·36-s − 0.624·41-s + 20/7·49-s − 0.260·59-s − 2.04·61-s − 1/8·64-s + 2.84·71-s − 1.60·76-s − 0.900·79-s + 81-s − 2.75·89-s − 0.398·101-s − 0.383·109-s + 1.85·116-s − 4·121-s − 0.718·124-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 5^{8} \cdot 19^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 5^{8} \cdot 19^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{4} \cdot 5^{8} \cdot 19^{4}\)
Sign: $1$
Analytic conductor: \(3311.33\)
Root analytic conductor: \(2.75423\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{4} \cdot 5^{8} \cdot 19^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(0.07831924092\)
\(L(\frac12)\) \(\approx\) \(0.07831924092\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2^2$ \( 1 - T^{2} + T^{4} \)
5 \( 1 \)
19$C_2$ \( ( 1 + 7 T + p T^{2} )^{2} \)
good3$C_2^3$ \( 1 + 5 T^{2} + 16 T^{4} + 5 p^{2} T^{6} + p^{4} T^{8} \)
7$C_2^2$ \( ( 1 - 10 T^{2} + p^{2} T^{4} )^{2} \)
11$C_2$ \( ( 1 + p T^{2} )^{4} \)
13$C_2^2$$\times$$C_2^2$ \( ( 1 - 4 T + 3 T^{2} - 4 p T^{3} + p^{2} T^{4} )( 1 + 4 T + 3 T^{2} + 4 p T^{3} + p^{2} T^{4} ) \)
17$C_2^3$ \( 1 - 15 T^{2} - 64 T^{4} - 15 p^{2} T^{6} + p^{4} T^{8} \)
23$C_2^3$ \( 1 + 42 T^{2} + 1235 T^{4} + 42 p^{2} T^{6} + p^{4} T^{8} \)
29$C_2^2$ \( ( 1 - 10 T + 71 T^{2} - 10 p T^{3} + p^{2} T^{4} )^{2} \)
31$C_2$ \( ( 1 + 2 T + p T^{2} )^{4} \)
37$C_2^2$ \( ( 1 - 58 T^{2} + p^{2} T^{4} )^{2} \)
41$C_2^2$ \( ( 1 + 2 T - 37 T^{2} + 2 p T^{3} + p^{2} T^{4} )^{2} \)
43$C_2^3$ \( 1 - 58 T^{2} + 1515 T^{4} - 58 p^{2} T^{6} + p^{4} T^{8} \)
47$C_2^2$ \( ( 1 + p T^{2} + p^{2} T^{4} )^{2} \)
53$C_2^2$ \( ( 1 + p T^{2} + p^{2} T^{4} )^{2} \)
59$C_2^2$ \( ( 1 + T - 58 T^{2} + p T^{3} + p^{2} T^{4} )^{2} \)
61$C_2^2$ \( ( 1 + 8 T + 3 T^{2} + 8 p T^{3} + p^{2} T^{4} )^{2} \)
67$C_2^3$ \( 1 + 70 T^{2} + 411 T^{4} + 70 p^{2} T^{6} + p^{4} T^{8} \)
71$C_2^2$ \( ( 1 - 12 T + 73 T^{2} - 12 p T^{3} + p^{2} T^{4} )^{2} \)
73$C_2^3$ \( 1 + 137 T^{2} + 13440 T^{4} + 137 p^{2} T^{6} + p^{4} T^{8} \)
79$C_2$ \( ( 1 - 13 T + p T^{2} )^{2}( 1 + 17 T + p T^{2} )^{2} \)
83$C_2^2$ \( ( 1 + 3 T^{2} + p^{2} T^{4} )^{2} \)
89$C_2^2$ \( ( 1 + 13 T + 80 T^{2} + 13 p T^{3} + p^{2} T^{4} )^{2} \)
97$C_2^3$ \( 1 - 31 T^{2} - 8448 T^{4} - 31 p^{2} T^{6} + p^{4} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.24903724510044528233062592458, −7.01161453847289977576748745334, −6.63303956935156635565896586996, −6.35787579211384244387026013447, −6.28187217984361891906604832587, −6.26383761212878209321051787158, −5.99762977822599129886135023561, −5.51493464702251269920713037866, −5.40417115485968476051934839357, −5.19950837468394501833989652945, −4.92186111585557371088124051254, −4.51843792320237024018355204104, −4.43416090502937850857314655864, −4.07785054821255127927936154037, −3.80482947237208209895949919534, −3.77849189061787920699576941870, −3.02572344753702151810622451150, −3.00779027933957581370270984600, −2.62391822363794850042053879788, −2.53810334306240301171549339700, −2.16012183911447001980077903740, −1.92439053178790940389031801423, −1.29976587523019975804123353436, −0.978587380227841306439929694807, −0.06793423767732642485539334538, 0.06793423767732642485539334538, 0.978587380227841306439929694807, 1.29976587523019975804123353436, 1.92439053178790940389031801423, 2.16012183911447001980077903740, 2.53810334306240301171549339700, 2.62391822363794850042053879788, 3.00779027933957581370270984600, 3.02572344753702151810622451150, 3.77849189061787920699576941870, 3.80482947237208209895949919534, 4.07785054821255127927936154037, 4.43416090502937850857314655864, 4.51843792320237024018355204104, 4.92186111585557371088124051254, 5.19950837468394501833989652945, 5.40417115485968476051934839357, 5.51493464702251269920713037866, 5.99762977822599129886135023561, 6.26383761212878209321051787158, 6.28187217984361891906604832587, 6.35787579211384244387026013447, 6.63303956935156635565896586996, 7.01161453847289977576748745334, 7.24903724510044528233062592458

Graph of the $Z$-function along the critical line