Properties

Label 2-95-95.44-c1-0-7
Degree $2$
Conductor $95$
Sign $-0.837 + 0.546i$
Analytic cond. $0.758578$
Root an. cond. $0.870964$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.14 − 1.36i)2-s + (0.815 − 2.24i)3-s + (−0.205 + 1.16i)4-s + (−2.08 − 0.816i)5-s + (−3.99 + 1.45i)6-s + (3.67 + 2.11i)7-s + (−1.25 + 0.727i)8-s + (−2.05 − 1.72i)9-s + (1.27 + 3.78i)10-s + (0.245 + 0.425i)11-s + (2.44 + 1.41i)12-s + (−1.42 − 3.91i)13-s + (−1.31 − 7.45i)14-s + (−3.52 + 3.99i)15-s + (4.66 + 1.69i)16-s + (1.30 + 1.55i)17-s + ⋯
L(s)  = 1  + (−0.811 − 0.966i)2-s + (0.470 − 1.29i)3-s + (−0.102 + 0.583i)4-s + (−0.930 − 0.365i)5-s + (−1.63 + 0.594i)6-s + (1.38 + 0.801i)7-s + (−0.445 + 0.257i)8-s + (−0.684 − 0.574i)9-s + (0.402 + 1.19i)10-s + (0.0740 + 0.128i)11-s + (0.706 + 0.407i)12-s + (−0.394 − 1.08i)13-s + (−0.351 − 1.99i)14-s + (−0.910 + 1.03i)15-s + (1.16 + 0.424i)16-s + (0.317 + 0.378i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 95 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.837 + 0.546i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 95 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.837 + 0.546i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(95\)    =    \(5 \cdot 19\)
Sign: $-0.837 + 0.546i$
Analytic conductor: \(0.758578\)
Root analytic conductor: \(0.870964\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{95} (44, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 95,\ (\ :1/2),\ -0.837 + 0.546i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.209421 - 0.704739i\)
\(L(\frac12)\) \(\approx\) \(0.209421 - 0.704739i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + (2.08 + 0.816i)T \)
19 \( 1 + (1.86 + 3.93i)T \)
good2 \( 1 + (1.14 + 1.36i)T + (-0.347 + 1.96i)T^{2} \)
3 \( 1 + (-0.815 + 2.24i)T + (-2.29 - 1.92i)T^{2} \)
7 \( 1 + (-3.67 - 2.11i)T + (3.5 + 6.06i)T^{2} \)
11 \( 1 + (-0.245 - 0.425i)T + (-5.5 + 9.52i)T^{2} \)
13 \( 1 + (1.42 + 3.91i)T + (-9.95 + 8.35i)T^{2} \)
17 \( 1 + (-1.30 - 1.55i)T + (-2.95 + 16.7i)T^{2} \)
23 \( 1 + (-4.32 - 0.763i)T + (21.6 + 7.86i)T^{2} \)
29 \( 1 + (-2.49 - 2.09i)T + (5.03 + 28.5i)T^{2} \)
31 \( 1 + (2.04 - 3.54i)T + (-15.5 - 26.8i)T^{2} \)
37 \( 1 - 2.14iT - 37T^{2} \)
41 \( 1 + (4.10 + 1.49i)T + (31.4 + 26.3i)T^{2} \)
43 \( 1 + (10.4 - 1.84i)T + (40.4 - 14.7i)T^{2} \)
47 \( 1 + (-1.68 + 2.00i)T + (-8.16 - 46.2i)T^{2} \)
53 \( 1 + (-11.2 - 1.98i)T + (49.8 + 18.1i)T^{2} \)
59 \( 1 + (-0.415 + 0.348i)T + (10.2 - 58.1i)T^{2} \)
61 \( 1 + (2.36 - 13.4i)T + (-57.3 - 20.8i)T^{2} \)
67 \( 1 + (4.60 - 5.48i)T + (-11.6 - 65.9i)T^{2} \)
71 \( 1 + (-1.04 - 5.94i)T + (-66.7 + 24.2i)T^{2} \)
73 \( 1 + (-0.702 + 1.93i)T + (-55.9 - 46.9i)T^{2} \)
79 \( 1 + (-5.01 - 1.82i)T + (60.5 + 50.7i)T^{2} \)
83 \( 1 + (7.02 + 4.05i)T + (41.5 + 71.8i)T^{2} \)
89 \( 1 + (4.07 - 1.48i)T + (68.1 - 57.2i)T^{2} \)
97 \( 1 + (3.62 + 4.32i)T + (-16.8 + 95.5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.11927658014480161446513524270, −12.20880673535627324542391991658, −11.63591171371241529261662251707, −10.54714034759382061549477238113, −8.692946150707048772822892001030, −8.373938072269828801755401307390, −7.26757427379445087211358827791, −5.19120471502499298996963505107, −2.76662487457768720806940891167, −1.31744481535857768329780072088, 3.70823474995577619206244853078, 4.78256268097420870078995642286, 6.92324969624131911172863965719, 7.920053166969581283137820618568, 8.713822638903871065664489022900, 9.889635130800325604120171435180, 10.92704938439449172946325733496, 11.95045375526882795454974332513, 14.13347221729045938675476846618, 14.80867129509478956789043884455

Graph of the $Z$-function along the critical line