Properties

Degree 2
Conductor $ 2^{6} \cdot 3 \cdot 7^{2} $
Sign $1$
Motivic weight 1
Primitive yes
Self-dual yes
Analytic rank 0

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 3.20·5-s + 9-s + 4.24·11-s + 3.15·13-s + 3.20·15-s − 4.40·17-s + 3.15·19-s − 4.40·23-s + 5.24·25-s + 27-s − 7.20·29-s − 2.04·31-s + 4.24·33-s + 9.65·37-s + 3.15·39-s − 10.4·41-s + 0.750·43-s + 3.20·45-s + 2.40·47-s − 4.40·51-s + 3.29·53-s + 13.6·55-s + 3.15·57-s + 8.24·59-s + 8.09·61-s + 10.0·65-s + ⋯
L(s)  = 1  + 0.577·3-s + 1.43·5-s + 0.333·9-s + 1.28·11-s + 0.874·13-s + 0.826·15-s − 1.06·17-s + 0.723·19-s − 0.918·23-s + 1.04·25-s + 0.192·27-s − 1.33·29-s − 0.367·31-s + 0.739·33-s + 1.58·37-s + 0.504·39-s − 1.63·41-s + 0.114·43-s + 0.477·45-s + 0.350·47-s − 0.616·51-s + 0.452·53-s + 1.83·55-s + 0.417·57-s + 1.07·59-s + 1.03·61-s + 1.25·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9408 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9408 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(9408\)    =    \(2^{6} \cdot 3 \cdot 7^{2}\)
\( \varepsilon \)  =  $1$
motivic weight  =  \(1\)
character  :  $\chi_{9408} (1, \cdot )$
primitive  :  yes
self-dual  :  yes
analytic rank  =  \(0\)
Selberg data  =  \((2,\ 9408,\ (\ :1/2),\ 1)\)
\(L(1)\)  \(\approx\)  \(4.170271978\)
\(L(\frac12)\)  \(\approx\)  \(4.170271978\)
\(L(\frac{3}{2})\)   not available
\(L(1)\)   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \]where, for $p \notin \{2,\;3,\;7\}$,\[F_p(T) = 1 - a_p T + p T^2 .\]If $p \in \{2,\;3,\;7\}$, then $F_p(T)$ is a polynomial of degree at most 1.
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - T \)
7 \( 1 \)
good5 \( 1 - 3.20T + 5T^{2} \)
11 \( 1 - 4.24T + 11T^{2} \)
13 \( 1 - 3.15T + 13T^{2} \)
17 \( 1 + 4.40T + 17T^{2} \)
19 \( 1 - 3.15T + 19T^{2} \)
23 \( 1 + 4.40T + 23T^{2} \)
29 \( 1 + 7.20T + 29T^{2} \)
31 \( 1 + 2.04T + 31T^{2} \)
37 \( 1 - 9.65T + 37T^{2} \)
41 \( 1 + 10.4T + 41T^{2} \)
43 \( 1 - 0.750T + 43T^{2} \)
47 \( 1 - 2.40T + 47T^{2} \)
53 \( 1 - 3.29T + 53T^{2} \)
59 \( 1 - 8.24T + 59T^{2} \)
61 \( 1 - 8.09T + 61T^{2} \)
67 \( 1 - 5.15T + 67T^{2} \)
71 \( 1 + 6.40T + 71T^{2} \)
73 \( 1 - 15.2T + 73T^{2} \)
79 \( 1 - 16.4T + 79T^{2} \)
83 \( 1 - 14.5T + 83T^{2} \)
89 \( 1 - 2.40T + 89T^{2} \)
97 \( 1 - 4.24T + 97T^{2} \)
show more
show less
\[\begin{aligned}L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\end{aligned}\]

Imaginary part of the first few zeros on the critical line

−7.75959185769007772260945883926, −6.79702285021151383294216490740, −6.41704899927950004006749425362, −5.75290817132326567045518145549, −5.04024394122939073898479909759, −3.96185821880639667051699278126, −3.58388091753829931177248917921, −2.33867185541997348910026149245, −1.89445602034363284163293104649, −1.00842652589509993179592572831, 1.00842652589509993179592572831, 1.89445602034363284163293104649, 2.33867185541997348910026149245, 3.58388091753829931177248917921, 3.96185821880639667051699278126, 5.04024394122939073898479909759, 5.75290817132326567045518145549, 6.41704899927950004006749425362, 6.79702285021151383294216490740, 7.75959185769007772260945883926

Graph of the $Z$-function along the critical line