Properties

Degree $2$
Conductor $9408$
Sign $1$
Motivic weight $1$
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 0.454·5-s + 9-s − 5.79·11-s − 5.88·13-s − 0.454·15-s − 2.90·17-s − 5.88·19-s + 2.90·23-s − 4.79·25-s − 27-s − 3.54·29-s − 4.33·31-s + 5.79·33-s − 7.70·37-s + 5.88·39-s − 9.58·41-s + 10.7·43-s + 0.454·45-s + 4.90·47-s + 2.90·51-s − 13.1·53-s − 2.63·55-s + 5.88·57-s + 1.79·59-s + 4.67·61-s − 2.67·65-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.203·5-s + 0.333·9-s − 1.74·11-s − 1.63·13-s − 0.117·15-s − 0.705·17-s − 1.34·19-s + 0.606·23-s − 0.958·25-s − 0.192·27-s − 0.658·29-s − 0.779·31-s + 1.00·33-s − 1.26·37-s + 0.942·39-s − 1.49·41-s + 1.64·43-s + 0.0678·45-s + 0.716·47-s + 0.407·51-s − 1.80·53-s − 0.355·55-s + 0.779·57-s + 0.233·59-s + 0.598·61-s − 0.331·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9408 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9408 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9408\)    =    \(2^{6} \cdot 3 \cdot 7^{2}\)
Sign: $1$
Motivic weight: \(1\)
Character: $\chi_{9408} (1, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 9408,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.2842786864\)
\(L(\frac12)\) \(\approx\) \(0.2842786864\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + T \)
7 \( 1 \)
good5 \( 1 - 0.454T + 5T^{2} \)
11 \( 1 + 5.79T + 11T^{2} \)
13 \( 1 + 5.88T + 13T^{2} \)
17 \( 1 + 2.90T + 17T^{2} \)
19 \( 1 + 5.88T + 19T^{2} \)
23 \( 1 - 2.90T + 23T^{2} \)
29 \( 1 + 3.54T + 29T^{2} \)
31 \( 1 + 4.33T + 31T^{2} \)
37 \( 1 + 7.70T + 37T^{2} \)
41 \( 1 + 9.58T + 41T^{2} \)
43 \( 1 - 10.7T + 43T^{2} \)
47 \( 1 - 4.90T + 47T^{2} \)
53 \( 1 + 13.1T + 53T^{2} \)
59 \( 1 - 1.79T + 59T^{2} \)
61 \( 1 - 4.67T + 61T^{2} \)
67 \( 1 - 7.88T + 67T^{2} \)
71 \( 1 - 0.909T + 71T^{2} \)
73 \( 1 + 5.20T + 73T^{2} \)
79 \( 1 - 2.75T + 79T^{2} \)
83 \( 1 + 9.97T + 83T^{2} \)
89 \( 1 - 4.90T + 89T^{2} \)
97 \( 1 - 5.79T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.45949209499362781976817734880, −7.19723412192949004805895124128, −6.27689635819207242095295202085, −5.54145039310558001693901479501, −5.00293808712220904094785332711, −4.47503840107020430221377010288, −3.41981924068508168317564260184, −2.34435264276584154807412118641, −2.00786063452202614008030617818, −0.24115719727153709893694463870, 0.24115719727153709893694463870, 2.00786063452202614008030617818, 2.34435264276584154807412118641, 3.41981924068508168317564260184, 4.47503840107020430221377010288, 5.00293808712220904094785332711, 5.54145039310558001693901479501, 6.27689635819207242095295202085, 7.19723412192949004805895124128, 7.45949209499362781976817734880

Graph of the $Z$-function along the critical line