Properties

Degree $2$
Conductor $9408$
Sign $1$
Motivic weight $1$
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 3.20·5-s + 9-s + 4.24·11-s − 3.15·13-s + 3.20·15-s + 4.40·17-s − 3.15·19-s − 4.40·23-s + 5.24·25-s − 27-s − 7.20·29-s + 2.04·31-s − 4.24·33-s + 9.65·37-s + 3.15·39-s + 10.4·41-s + 0.750·43-s − 3.20·45-s − 2.40·47-s − 4.40·51-s + 3.29·53-s − 13.6·55-s + 3.15·57-s − 8.24·59-s − 8.09·61-s + 10.0·65-s + ⋯
L(s)  = 1  − 0.577·3-s − 1.43·5-s + 0.333·9-s + 1.28·11-s − 0.874·13-s + 0.826·15-s + 1.06·17-s − 0.723·19-s − 0.918·23-s + 1.04·25-s − 0.192·27-s − 1.33·29-s + 0.367·31-s − 0.739·33-s + 1.58·37-s + 0.504·39-s + 1.63·41-s + 0.114·43-s − 0.477·45-s − 0.350·47-s − 0.616·51-s + 0.452·53-s − 1.83·55-s + 0.417·57-s − 1.07·59-s − 1.03·61-s + 1.25·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9408 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9408 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9408\)    =    \(2^{6} \cdot 3 \cdot 7^{2}\)
Sign: $1$
Motivic weight: \(1\)
Character: $\chi_{9408} (1, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 9408,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.8888470614\)
\(L(\frac12)\) \(\approx\) \(0.8888470614\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + T \)
7 \( 1 \)
good5 \( 1 + 3.20T + 5T^{2} \)
11 \( 1 - 4.24T + 11T^{2} \)
13 \( 1 + 3.15T + 13T^{2} \)
17 \( 1 - 4.40T + 17T^{2} \)
19 \( 1 + 3.15T + 19T^{2} \)
23 \( 1 + 4.40T + 23T^{2} \)
29 \( 1 + 7.20T + 29T^{2} \)
31 \( 1 - 2.04T + 31T^{2} \)
37 \( 1 - 9.65T + 37T^{2} \)
41 \( 1 - 10.4T + 41T^{2} \)
43 \( 1 - 0.750T + 43T^{2} \)
47 \( 1 + 2.40T + 47T^{2} \)
53 \( 1 - 3.29T + 53T^{2} \)
59 \( 1 + 8.24T + 59T^{2} \)
61 \( 1 + 8.09T + 61T^{2} \)
67 \( 1 - 5.15T + 67T^{2} \)
71 \( 1 + 6.40T + 71T^{2} \)
73 \( 1 + 15.2T + 73T^{2} \)
79 \( 1 - 16.4T + 79T^{2} \)
83 \( 1 + 14.5T + 83T^{2} \)
89 \( 1 + 2.40T + 89T^{2} \)
97 \( 1 + 4.24T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.61820233017828560711810442991, −7.21062940107671289007693120872, −6.24932285746250591686561085507, −5.81752200660794771218579528723, −4.72736072426378905115018571416, −4.17324403729266268787230267666, −3.72976749159973237416133366956, −2.71418655918622414216178887001, −1.51735016009346723398151952212, −0.48434694327171247333537163029, 0.48434694327171247333537163029, 1.51735016009346723398151952212, 2.71418655918622414216178887001, 3.72976749159973237416133366956, 4.17324403729266268787230267666, 4.72736072426378905115018571416, 5.81752200660794771218579528723, 6.24932285746250591686561085507, 7.21062940107671289007693120872, 7.61820233017828560711810442991

Graph of the $Z$-function along the critical line