Properties

Degree 2
Conductor $ 2^{6} \cdot 3 \cdot 7^{2} $
Sign $1$
Motivic weight 1
Primitive yes
Self-dual yes
Analytic rank 0

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 9-s + 5.65·11-s + 5.65·13-s − 5.65·17-s − 4·19-s − 5.65·23-s − 5·25-s + 27-s + 6·29-s + 8·31-s + 5.65·33-s − 2·37-s + 5.65·39-s + 5.65·41-s + 8·47-s − 5.65·51-s + 2·53-s − 4·57-s − 4·59-s + 5.65·61-s − 11.3·67-s − 5.65·69-s + 5.65·71-s + 11.3·73-s − 5·75-s + 11.3·79-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.333·9-s + 1.70·11-s + 1.56·13-s − 1.37·17-s − 0.917·19-s − 1.17·23-s − 25-s + 0.192·27-s + 1.11·29-s + 1.43·31-s + 0.984·33-s − 0.328·37-s + 0.905·39-s + 0.883·41-s + 1.16·47-s − 0.792·51-s + 0.274·53-s − 0.529·57-s − 0.520·59-s + 0.724·61-s − 1.38·67-s − 0.681·69-s + 0.671·71-s + 1.32·73-s − 0.577·75-s + 1.27·79-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9408 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9408 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(9408\)    =    \(2^{6} \cdot 3 \cdot 7^{2}\)
\( \varepsilon \)  =  $1$
motivic weight  =  \(1\)
character  :  $\chi_{9408} (1, \cdot )$
primitive  :  yes
self-dual  :  yes
analytic rank  =  \(0\)
Selberg data  =  \((2,\ 9408,\ (\ :1/2),\ 1)\)
\(L(1)\)  \(\approx\)  \(3.119807474\)
\(L(\frac12)\)  \(\approx\)  \(3.119807474\)
\(L(\frac{3}{2})\)   not available
\(L(1)\)   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \]where, for $p \notin \{2,\;3,\;7\}$,\[F_p(T) = 1 - a_p T + p T^2 .\]If $p \in \{2,\;3,\;7\}$, then $F_p(T)$ is a polynomial of degree at most 1.
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - T \)
7 \( 1 \)
good5 \( 1 + 5T^{2} \)
11 \( 1 - 5.65T + 11T^{2} \)
13 \( 1 - 5.65T + 13T^{2} \)
17 \( 1 + 5.65T + 17T^{2} \)
19 \( 1 + 4T + 19T^{2} \)
23 \( 1 + 5.65T + 23T^{2} \)
29 \( 1 - 6T + 29T^{2} \)
31 \( 1 - 8T + 31T^{2} \)
37 \( 1 + 2T + 37T^{2} \)
41 \( 1 - 5.65T + 41T^{2} \)
43 \( 1 + 43T^{2} \)
47 \( 1 - 8T + 47T^{2} \)
53 \( 1 - 2T + 53T^{2} \)
59 \( 1 + 4T + 59T^{2} \)
61 \( 1 - 5.65T + 61T^{2} \)
67 \( 1 + 11.3T + 67T^{2} \)
71 \( 1 - 5.65T + 71T^{2} \)
73 \( 1 - 11.3T + 73T^{2} \)
79 \( 1 - 11.3T + 79T^{2} \)
83 \( 1 - 12T + 83T^{2} \)
89 \( 1 + 5.65T + 89T^{2} \)
97 \( 1 + 97T^{2} \)
show more
show less
\[\begin{aligned}L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\end{aligned}\]

Imaginary part of the first few zeros on the critical line

−7.911933362660355096301638688843, −6.82672441438608402066648718749, −6.33209716339531137071855047537, −6.02751448165583504117786541015, −4.63340131782117377259318855332, −4.01754468724643796816698474815, −3.72093086885127854385664539478, −2.51021804242624827538827399585, −1.78724827875133163800567208756, −0.857457788768882232748049337839, 0.857457788768882232748049337839, 1.78724827875133163800567208756, 2.51021804242624827538827399585, 3.72093086885127854385664539478, 4.01754468724643796816698474815, 4.63340131782117377259318855332, 6.02751448165583504117786541015, 6.33209716339531137071855047537, 6.82672441438608402066648718749, 7.911933362660355096301638688843

Graph of the $Z$-function along the critical line