Properties

Degree $4$
Conductor $88510464$
Sign $1$
Motivic weight $1$
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s − 4·5-s + 3·9-s + 4·11-s − 8·15-s − 4·17-s + 8·19-s − 4·23-s + 4·25-s + 4·27-s − 16·31-s + 8·33-s + 8·37-s − 4·41-s − 16·43-s − 12·45-s − 8·47-s − 8·51-s + 4·53-s − 16·55-s + 16·57-s + 16·59-s − 8·61-s − 16·67-s − 8·69-s − 4·71-s − 8·73-s + ⋯
L(s)  = 1  + 1.15·3-s − 1.78·5-s + 9-s + 1.20·11-s − 2.06·15-s − 0.970·17-s + 1.83·19-s − 0.834·23-s + 4/5·25-s + 0.769·27-s − 2.87·31-s + 1.39·33-s + 1.31·37-s − 0.624·41-s − 2.43·43-s − 1.78·45-s − 1.16·47-s − 1.12·51-s + 0.549·53-s − 2.15·55-s + 2.11·57-s + 2.08·59-s − 1.02·61-s − 1.95·67-s − 0.963·69-s − 0.474·71-s − 0.936·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 88510464 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 88510464 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(88510464\)    =    \(2^{12} \cdot 3^{2} \cdot 7^{4}\)
Sign: $1$
Motivic weight: \(1\)
Character: induced by $\chi_{9408} (1, \cdot )$
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 88510464,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_1$ \( ( 1 - T )^{2} \)
7 \( 1 \)
good5$D_{4}$ \( 1 + 4 T + 12 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
11$D_{4}$ \( 1 - 4 T + 18 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
13$C_2^2$ \( 1 + 24 T^{2} + p^{2} T^{4} \)
17$D_{4}$ \( 1 + 4 T + 20 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
19$D_{4}$ \( 1 - 8 T + 46 T^{2} - 8 p T^{3} + p^{2} T^{4} \)
23$C_4$ \( 1 + 4 T + 42 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
29$C_2^2$ \( 1 - 14 T^{2} + p^{2} T^{4} \)
31$D_{4}$ \( 1 + 16 T + 118 T^{2} + 16 p T^{3} + p^{2} T^{4} \)
37$D_{4}$ \( 1 - 8 T + 58 T^{2} - 8 p T^{3} + p^{2} T^{4} \)
41$D_{4}$ \( 1 + 4 T + 84 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
43$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
47$D_{4}$ \( 1 + 8 T + 102 T^{2} + 8 p T^{3} + p^{2} T^{4} \)
53$D_{4}$ \( 1 - 4 T - 18 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
59$D_{4}$ \( 1 - 16 T + 174 T^{2} - 16 p T^{3} + p^{2} T^{4} \)
61$D_{4}$ \( 1 + 8 T + 40 T^{2} + 8 p T^{3} + p^{2} T^{4} \)
67$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
71$D_{4}$ \( 1 + 4 T + 138 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
73$D_{4}$ \( 1 + 8 T + 112 T^{2} + 8 p T^{3} + p^{2} T^{4} \)
79$D_{4}$ \( 1 - 16 T + 190 T^{2} - 16 p T^{3} + p^{2} T^{4} \)
83$D_{4}$ \( 1 - 8 T + 54 T^{2} - 8 p T^{3} + p^{2} T^{4} \)
89$D_{4}$ \( 1 - 4 T + 20 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
97$D_{4}$ \( 1 + 24 T + 320 T^{2} + 24 p T^{3} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.57154376563379341114025824019, −7.30576192335939904214429203550, −6.87911034462135090292850058215, −6.87092532125202661203160267877, −6.28152140369262438285565225280, −5.79438087634441221715866179527, −5.47004825398509958550923868276, −4.98962289326104261798410227186, −4.45709415941212537530046969521, −4.39134080888169013303153690359, −3.83990440919322935449915464847, −3.58426539741371433971422217828, −3.29430185986439190865314114532, −3.22989944011303972750872174630, −2.26021299805192728319195793621, −2.12426429490168980933044591847, −1.39287764319180361409319699558, −1.18709860967949250865613860532, 0, 0, 1.18709860967949250865613860532, 1.39287764319180361409319699558, 2.12426429490168980933044591847, 2.26021299805192728319195793621, 3.22989944011303972750872174630, 3.29430185986439190865314114532, 3.58426539741371433971422217828, 3.83990440919322935449915464847, 4.39134080888169013303153690359, 4.45709415941212537530046969521, 4.98962289326104261798410227186, 5.47004825398509958550923868276, 5.79438087634441221715866179527, 6.28152140369262438285565225280, 6.87092532125202661203160267877, 6.87911034462135090292850058215, 7.30576192335939904214429203550, 7.57154376563379341114025824019

Graph of the $Z$-function along the critical line