Properties

Degree $4$
Conductor $88510464$
Sign $1$
Motivic weight $1$
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s − 4·5-s + 3·9-s − 4·11-s + 8·15-s + 12·17-s + 8·19-s + 4·23-s + 4·25-s − 4·27-s + 8·33-s − 8·37-s + 12·41-s − 12·45-s − 8·47-s − 24·51-s + 4·53-s + 16·55-s − 16·57-s − 8·61-s − 8·69-s + 4·71-s + 24·73-s − 8·75-s − 16·79-s + 5·81-s − 8·83-s + ⋯
L(s)  = 1  − 1.15·3-s − 1.78·5-s + 9-s − 1.20·11-s + 2.06·15-s + 2.91·17-s + 1.83·19-s + 0.834·23-s + 4/5·25-s − 0.769·27-s + 1.39·33-s − 1.31·37-s + 1.87·41-s − 1.78·45-s − 1.16·47-s − 3.36·51-s + 0.549·53-s + 2.15·55-s − 2.11·57-s − 1.02·61-s − 0.963·69-s + 0.474·71-s + 2.80·73-s − 0.923·75-s − 1.80·79-s + 5/9·81-s − 0.878·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 88510464 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 88510464 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(88510464\)    =    \(2^{12} \cdot 3^{2} \cdot 7^{4}\)
Sign: $1$
Motivic weight: \(1\)
Character: induced by $\chi_{9408} (1, \cdot )$
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 88510464,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.186335943\)
\(L(\frac12)\) \(\approx\) \(1.186335943\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_1$ \( ( 1 + T )^{2} \)
7 \( 1 \)
good5$D_{4}$ \( 1 + 4 T + 12 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
11$D_{4}$ \( 1 + 4 T + 18 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
13$C_2^2$ \( 1 + 8 T^{2} + p^{2} T^{4} \)
17$D_{4}$ \( 1 - 12 T + 4 p T^{2} - 12 p T^{3} + p^{2} T^{4} \)
19$D_{4}$ \( 1 - 8 T + 46 T^{2} - 8 p T^{3} + p^{2} T^{4} \)
23$C_4$ \( 1 - 4 T + 42 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
29$C_2^2$ \( 1 + 50 T^{2} + p^{2} T^{4} \)
31$C_2^2$ \( 1 + 54 T^{2} + p^{2} T^{4} \)
37$D_{4}$ \( 1 + 8 T + 58 T^{2} + 8 p T^{3} + p^{2} T^{4} \)
41$D_{4}$ \( 1 - 12 T + 100 T^{2} - 12 p T^{3} + p^{2} T^{4} \)
43$C_2^2$ \( 1 - 42 T^{2} + p^{2} T^{4} \)
47$D_{4}$ \( 1 + 8 T + 38 T^{2} + 8 p T^{3} + p^{2} T^{4} \)
53$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
59$C_2^2$ \( 1 + 46 T^{2} + p^{2} T^{4} \)
61$D_{4}$ \( 1 + 8 T + 88 T^{2} + 8 p T^{3} + p^{2} T^{4} \)
67$C_2^2$ \( 1 + 6 T^{2} + p^{2} T^{4} \)
71$D_{4}$ \( 1 - 4 T + 74 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
73$D_{4}$ \( 1 - 24 T + 272 T^{2} - 24 p T^{3} + p^{2} T^{4} \)
79$D_{4}$ \( 1 + 16 T + 190 T^{2} + 16 p T^{3} + p^{2} T^{4} \)
83$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
89$D_{4}$ \( 1 - 20 T + 260 T^{2} - 20 p T^{3} + p^{2} T^{4} \)
97$D_{4}$ \( 1 - 8 T + 192 T^{2} - 8 p T^{3} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.74008040769371072735520884509, −7.71212231384432633819634952408, −7.16784655540374758434895804035, −7.14541147584709354759666860321, −6.38589310716060449822510360685, −6.27585159398255304030811152763, −5.52150892788813761471739189031, −5.42975117689147303756168167434, −5.16632580600902070163892745281, −5.05691908711372113357746931652, −4.34561839721266064699510588704, −4.03156196042972912551796396345, −3.57833832579480186289969532436, −3.39316266636491872321900653410, −2.94591525656567255632870769662, −2.64952383594680782439201515766, −1.71216630829692731389855337626, −1.25002761239093468326579984739, −0.76600126451800262411021570334, −0.40811534615367071718572485882, 0.40811534615367071718572485882, 0.76600126451800262411021570334, 1.25002761239093468326579984739, 1.71216630829692731389855337626, 2.64952383594680782439201515766, 2.94591525656567255632870769662, 3.39316266636491872321900653410, 3.57833832579480186289969532436, 4.03156196042972912551796396345, 4.34561839721266064699510588704, 5.05691908711372113357746931652, 5.16632580600902070163892745281, 5.42975117689147303756168167434, 5.52150892788813761471739189031, 6.27585159398255304030811152763, 6.38589310716060449822510360685, 7.14541147584709354759666860321, 7.16784655540374758434895804035, 7.71212231384432633819634952408, 7.74008040769371072735520884509

Graph of the $Z$-function along the critical line