Properties

Label 8-930e4-1.1-c1e4-0-2
Degree $8$
Conductor $748052010000$
Sign $1$
Analytic cond. $3041.16$
Root an. cond. $2.72508$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·4-s + 2·7-s − 3·9-s − 12·13-s + 3·16-s − 8·19-s + 25-s − 4·28-s − 22·31-s + 6·36-s + 24·37-s + 12·43-s + 15·49-s + 24·52-s − 6·63-s − 4·64-s + 4·67-s + 24·73-s + 16·76-s − 36·79-s − 24·91-s − 4·97-s − 2·100-s − 14·103-s − 16·109-s + 6·112-s + 36·117-s + ⋯
L(s)  = 1  − 4-s + 0.755·7-s − 9-s − 3.32·13-s + 3/4·16-s − 1.83·19-s + 1/5·25-s − 0.755·28-s − 3.95·31-s + 36-s + 3.94·37-s + 1.82·43-s + 15/7·49-s + 3.32·52-s − 0.755·63-s − 1/2·64-s + 0.488·67-s + 2.80·73-s + 1.83·76-s − 4.05·79-s − 2.51·91-s − 0.406·97-s − 1/5·100-s − 1.37·103-s − 1.53·109-s + 0.566·112-s + 3.32·117-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{4} \cdot 5^{4} \cdot 31^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{4} \cdot 5^{4} \cdot 31^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{4} \cdot 3^{4} \cdot 5^{4} \cdot 31^{4}\)
Sign: $1$
Analytic conductor: \(3041.16\)
Root analytic conductor: \(2.72508\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{4} \cdot 3^{4} \cdot 5^{4} \cdot 31^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(0.3613686953\)
\(L(\frac12)\) \(\approx\) \(0.3613686953\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( ( 1 + T^{2} )^{2} \)
3$C_2^2$ \( 1 + p T^{2} + p^{2} T^{4} \)
5$C_2^2$ \( 1 - T^{2} + T^{4} \)
31$C_2$ \( ( 1 + 11 T + p T^{2} )^{2} \)
good7$C_2$ \( ( 1 - 5 T + p T^{2} )^{2}( 1 + 4 T + p T^{2} )^{2} \)
11$C_2^3$ \( 1 + 5 T^{2} - 96 T^{4} + 5 p^{2} T^{6} + p^{4} T^{8} \)
13$C_2^2$ \( ( 1 + 6 T + 25 T^{2} + 6 p T^{3} + p^{2} T^{4} )^{2} \)
17$C_2^3$ \( 1 - 22 T^{2} + 195 T^{4} - 22 p^{2} T^{6} + p^{4} T^{8} \)
19$C_2^2$ \( ( 1 + 4 T - 3 T^{2} + 4 p T^{3} + p^{2} T^{4} )^{2} \)
23$C_2^2$ \( ( 1 - 2 T^{2} + p^{2} T^{4} )^{2} \)
29$C_2^2$ \( ( 1 + 55 T^{2} + p^{2} T^{4} )^{2} \)
37$C_2$ \( ( 1 - 11 T + p T^{2} )^{2}( 1 - T + p T^{2} )^{2} \)
41$C_2^3$ \( 1 + 46 T^{2} + 435 T^{4} + 46 p^{2} T^{6} + p^{4} T^{8} \)
43$C_2^2$ \( ( 1 - 6 T + 55 T^{2} - 6 p T^{3} + p^{2} T^{4} )^{2} \)
47$C_2^2$ \( ( 1 + 50 T^{2} + p^{2} T^{4} )^{2} \)
53$C_2^3$ \( 1 + 41 T^{2} - 1128 T^{4} + 41 p^{2} T^{6} + p^{4} T^{8} \)
59$C_2^3$ \( 1 - 107 T^{2} + 7968 T^{4} - 107 p^{2} T^{6} + p^{4} T^{8} \)
61$C_2^2$ \( ( 1 - 110 T^{2} + p^{2} T^{4} )^{2} \)
67$C_2^2$ \( ( 1 - 2 T - 63 T^{2} - 2 p T^{3} + p^{2} T^{4} )^{2} \)
71$C_2^3$ \( 1 - 2 T^{2} - 5037 T^{4} - 2 p^{2} T^{6} + p^{4} T^{8} \)
73$C_2^2$ \( ( 1 - 12 T + 121 T^{2} - 12 p T^{3} + p^{2} T^{4} )^{2} \)
79$C_2^2$ \( ( 1 + 18 T + 187 T^{2} + 18 p T^{3} + p^{2} T^{4} )^{2} \)
83$C_2^3$ \( 1 - 139 T^{2} + 12432 T^{4} - 139 p^{2} T^{6} + p^{4} T^{8} \)
89$C_2^2$ \( ( 1 + 70 T^{2} + p^{2} T^{4} )^{2} \)
97$C_2$ \( ( 1 + T + p T^{2} )^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.34634454357223761229482112669, −7.11886905820432567935058806394, −6.72153880524251968358724154211, −6.68616218034412165322903133104, −6.34574342492526309749271101235, −5.73745379082886703804657323519, −5.71235128293159518809124111718, −5.57038186957210885266663455092, −5.49180064158375595579167208877, −5.31518518774862399134446897733, −4.63676246447343807603903998229, −4.63515798158073784367472199683, −4.38238202693300249271918285502, −4.30560508193028983994449857092, −4.08815879434775405704147675419, −3.64273198799905050629209685702, −3.35137640370174772292925367158, −2.85121877304039079930924661469, −2.71598343930472018465862540324, −2.28910609151259463945568030526, −2.21299922716708077311597820150, −2.02667978665344658950777078887, −1.30504364245393766772425949845, −0.71439241652872735583149676646, −0.19614357898008788258020947211, 0.19614357898008788258020947211, 0.71439241652872735583149676646, 1.30504364245393766772425949845, 2.02667978665344658950777078887, 2.21299922716708077311597820150, 2.28910609151259463945568030526, 2.71598343930472018465862540324, 2.85121877304039079930924661469, 3.35137640370174772292925367158, 3.64273198799905050629209685702, 4.08815879434775405704147675419, 4.30560508193028983994449857092, 4.38238202693300249271918285502, 4.63515798158073784367472199683, 4.63676246447343807603903998229, 5.31518518774862399134446897733, 5.49180064158375595579167208877, 5.57038186957210885266663455092, 5.71235128293159518809124111718, 5.73745379082886703804657323519, 6.34574342492526309749271101235, 6.68616218034412165322903133104, 6.72153880524251968358724154211, 7.11886905820432567935058806394, 7.34634454357223761229482112669

Graph of the $Z$-function along the critical line