Properties

Label 2-930-31.28-c1-0-1
Degree $2$
Conductor $930$
Sign $-0.226 - 0.973i$
Analytic cond. $7.42608$
Root an. cond. $2.72508$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.809 − 0.587i)2-s + (0.104 − 0.994i)3-s + (0.309 − 0.951i)4-s + (−0.5 + 0.866i)5-s + (−0.5 − 0.866i)6-s + (−4.34 + 0.923i)7-s + (−0.309 − 0.951i)8-s + (−0.978 − 0.207i)9-s + (0.104 + 0.994i)10-s + (0.280 + 0.311i)11-s + (−0.913 − 0.406i)12-s + (−4.57 + 2.03i)13-s + (−2.97 + 3.30i)14-s + (0.809 + 0.587i)15-s + (−0.809 − 0.587i)16-s + (−0.519 + 0.577i)17-s + ⋯
L(s)  = 1  + (0.572 − 0.415i)2-s + (0.0603 − 0.574i)3-s + (0.154 − 0.475i)4-s + (−0.223 + 0.387i)5-s + (−0.204 − 0.353i)6-s + (−1.64 + 0.349i)7-s + (−0.109 − 0.336i)8-s + (−0.326 − 0.0693i)9-s + (0.0330 + 0.314i)10-s + (0.0846 + 0.0940i)11-s + (−0.263 − 0.117i)12-s + (−1.26 + 0.564i)13-s + (−0.794 + 0.882i)14-s + (0.208 + 0.151i)15-s + (−0.202 − 0.146i)16-s + (−0.126 + 0.139i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 930 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.226 - 0.973i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 930 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.226 - 0.973i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(930\)    =    \(2 \cdot 3 \cdot 5 \cdot 31\)
Sign: $-0.226 - 0.973i$
Analytic conductor: \(7.42608\)
Root analytic conductor: \(2.72508\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{930} (121, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 930,\ (\ :1/2),\ -0.226 - 0.973i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.277012 + 0.348975i\)
\(L(\frac12)\) \(\approx\) \(0.277012 + 0.348975i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.809 + 0.587i)T \)
3 \( 1 + (-0.104 + 0.994i)T \)
5 \( 1 + (0.5 - 0.866i)T \)
31 \( 1 + (4.06 - 3.80i)T \)
good7 \( 1 + (4.34 - 0.923i)T + (6.39 - 2.84i)T^{2} \)
11 \( 1 + (-0.280 - 0.311i)T + (-1.14 + 10.9i)T^{2} \)
13 \( 1 + (4.57 - 2.03i)T + (8.69 - 9.66i)T^{2} \)
17 \( 1 + (0.519 - 0.577i)T + (-1.77 - 16.9i)T^{2} \)
19 \( 1 + (-4.80 - 2.13i)T + (12.7 + 14.1i)T^{2} \)
23 \( 1 + (-1.73 - 5.33i)T + (-18.6 + 13.5i)T^{2} \)
29 \( 1 + (3.73 - 2.71i)T + (8.96 - 27.5i)T^{2} \)
37 \( 1 + (3.38 + 5.85i)T + (-18.5 + 32.0i)T^{2} \)
41 \( 1 + (0.00274 + 0.0260i)T + (-40.1 + 8.52i)T^{2} \)
43 \( 1 + (6.04 + 2.68i)T + (28.7 + 31.9i)T^{2} \)
47 \( 1 + (6.32 + 4.59i)T + (14.5 + 44.6i)T^{2} \)
53 \( 1 + (2.05 + 0.436i)T + (48.4 + 21.5i)T^{2} \)
59 \( 1 + (-0.124 + 1.18i)T + (-57.7 - 12.2i)T^{2} \)
61 \( 1 - 4.03T + 61T^{2} \)
67 \( 1 + (3.48 - 6.03i)T + (-33.5 - 58.0i)T^{2} \)
71 \( 1 + (14.2 + 3.03i)T + (64.8 + 28.8i)T^{2} \)
73 \( 1 + (-7.94 - 8.82i)T + (-7.63 + 72.6i)T^{2} \)
79 \( 1 + (4.29 - 4.77i)T + (-8.25 - 78.5i)T^{2} \)
83 \( 1 + (0.629 + 5.98i)T + (-81.1 + 17.2i)T^{2} \)
89 \( 1 + (-3.59 + 11.0i)T + (-72.0 - 52.3i)T^{2} \)
97 \( 1 + (-3.76 + 11.5i)T + (-78.4 - 57.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.18770591845061776570572913566, −9.635985759215606239922261441544, −8.867483573645333009661578551507, −7.24629520350366974156412888949, −7.07906203080696520547707526943, −5.96413429342581085566408158774, −5.16886167742860116838478110638, −3.63668486298262220476899863118, −3.07475303311902203157205537672, −1.88189819983373644725786204596, 0.15843383399572031298663119622, 2.77673387271845744826224550431, 3.46361085792409901118951461506, 4.55178432308815176611011114334, 5.33527217824459757663258649520, 6.36876237176470445910760072780, 7.16038335476886176926835390363, 8.008862371400722410191161042606, 9.224966917202299636867302233845, 9.675643009716429586167398949924

Graph of the $Z$-function along the critical line