Properties

Label 2-930-31.19-c1-0-17
Degree $2$
Conductor $930$
Sign $0.261 + 0.965i$
Analytic cond. $7.42608$
Root an. cond. $2.72508$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.809 − 0.587i)2-s + (0.913 + 0.406i)3-s + (0.309 + 0.951i)4-s + (−0.5 + 0.866i)5-s + (−0.5 − 0.866i)6-s + (2.70 − 3.00i)7-s + (0.309 − 0.951i)8-s + (0.669 + 0.743i)9-s + (0.913 − 0.406i)10-s + (−0.950 − 0.202i)11-s + (−0.104 + 0.994i)12-s + (−0.548 − 5.22i)13-s + (−3.95 + 0.841i)14-s + (−0.809 + 0.587i)15-s + (−0.809 + 0.587i)16-s + (−1.60 + 0.341i)17-s + ⋯
L(s)  = 1  + (−0.572 − 0.415i)2-s + (0.527 + 0.234i)3-s + (0.154 + 0.475i)4-s + (−0.223 + 0.387i)5-s + (−0.204 − 0.353i)6-s + (1.02 − 1.13i)7-s + (0.109 − 0.336i)8-s + (0.223 + 0.247i)9-s + (0.288 − 0.128i)10-s + (−0.286 − 0.0609i)11-s + (−0.0301 + 0.287i)12-s + (−0.152 − 1.44i)13-s + (−1.05 + 0.224i)14-s + (−0.208 + 0.151i)15-s + (−0.202 + 0.146i)16-s + (−0.389 + 0.0828i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 930 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.261 + 0.965i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 930 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.261 + 0.965i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(930\)    =    \(2 \cdot 3 \cdot 5 \cdot 31\)
Sign: $0.261 + 0.965i$
Analytic conductor: \(7.42608\)
Root analytic conductor: \(2.72508\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{930} (391, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 930,\ (\ :1/2),\ 0.261 + 0.965i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.10649 - 0.846563i\)
\(L(\frac12)\) \(\approx\) \(1.10649 - 0.846563i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.809 + 0.587i)T \)
3 \( 1 + (-0.913 - 0.406i)T \)
5 \( 1 + (0.5 - 0.866i)T \)
31 \( 1 + (5.08 - 2.27i)T \)
good7 \( 1 + (-2.70 + 3.00i)T + (-0.731 - 6.96i)T^{2} \)
11 \( 1 + (0.950 + 0.202i)T + (10.0 + 4.47i)T^{2} \)
13 \( 1 + (0.548 + 5.22i)T + (-12.7 + 2.70i)T^{2} \)
17 \( 1 + (1.60 - 0.341i)T + (15.5 - 6.91i)T^{2} \)
19 \( 1 + (-0.387 + 3.68i)T + (-18.5 - 3.95i)T^{2} \)
23 \( 1 + (-1.00 + 3.10i)T + (-18.6 - 13.5i)T^{2} \)
29 \( 1 + (-2.77 - 2.01i)T + (8.96 + 27.5i)T^{2} \)
37 \( 1 + (-0.942 - 1.63i)T + (-18.5 + 32.0i)T^{2} \)
41 \( 1 + (0.532 - 0.236i)T + (27.4 - 30.4i)T^{2} \)
43 \( 1 + (-1.03 + 9.86i)T + (-42.0 - 8.94i)T^{2} \)
47 \( 1 + (-4.37 + 3.18i)T + (14.5 - 44.6i)T^{2} \)
53 \( 1 + (-4.53 - 5.03i)T + (-5.54 + 52.7i)T^{2} \)
59 \( 1 + (-9.73 - 4.33i)T + (39.4 + 43.8i)T^{2} \)
61 \( 1 - 4.11T + 61T^{2} \)
67 \( 1 + (-0.581 + 1.00i)T + (-33.5 - 58.0i)T^{2} \)
71 \( 1 + (6.80 + 7.55i)T + (-7.42 + 70.6i)T^{2} \)
73 \( 1 + (-0.919 - 0.195i)T + (66.6 + 29.6i)T^{2} \)
79 \( 1 + (-3.39 + 0.721i)T + (72.1 - 32.1i)T^{2} \)
83 \( 1 + (4.21 - 1.87i)T + (55.5 - 61.6i)T^{2} \)
89 \( 1 + (1.97 + 6.08i)T + (-72.0 + 52.3i)T^{2} \)
97 \( 1 + (-5.30 - 16.3i)T + (-78.4 + 57.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.23634565366165180819282159223, −8.934315176868750583140512851516, −8.287441779740354678212172747624, −7.50395423339964258676144386690, −6.96479026716853377962658849129, −5.31588512602468691392862127803, −4.34193519312065960202121331628, −3.35745540358371022367969401849, −2.32955652832000141763299411989, −0.78260114240516361922791715609, 1.56798581473074153971526880157, 2.40310976941465251869165287379, 4.09529720462220323262608081304, 5.08918554834856123126484369886, 5.98319297434309502084433589444, 7.08741372073958959684235644829, 7.905399327239956748824026943501, 8.560125496715688880686205086147, 9.164490656795670560277406297567, 9.877581449433459573322463247758

Graph of the $Z$-function along the critical line