Properties

Label 2-930-31.28-c1-0-11
Degree $2$
Conductor $930$
Sign $-0.0687 + 0.997i$
Analytic cond. $7.42608$
Root an. cond. $2.72508$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.809 + 0.587i)2-s + (0.104 − 0.994i)3-s + (0.309 − 0.951i)4-s + (0.5 − 0.866i)5-s + (0.5 + 0.866i)6-s + (−1.89 + 0.403i)7-s + (0.309 + 0.951i)8-s + (−0.978 − 0.207i)9-s + (0.104 + 0.994i)10-s + (0.662 + 0.735i)11-s + (−0.913 − 0.406i)12-s + (3.59 − 1.59i)13-s + (1.29 − 1.44i)14-s + (−0.809 − 0.587i)15-s + (−0.809 − 0.587i)16-s + (1.32 − 1.47i)17-s + ⋯
L(s)  = 1  + (−0.572 + 0.415i)2-s + (0.0603 − 0.574i)3-s + (0.154 − 0.475i)4-s + (0.223 − 0.387i)5-s + (0.204 + 0.353i)6-s + (−0.716 + 0.152i)7-s + (0.109 + 0.336i)8-s + (−0.326 − 0.0693i)9-s + (0.0330 + 0.314i)10-s + (0.199 + 0.221i)11-s + (−0.263 − 0.117i)12-s + (0.995 − 0.443i)13-s + (0.346 − 0.384i)14-s + (−0.208 − 0.151i)15-s + (−0.202 − 0.146i)16-s + (0.321 − 0.357i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 930 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0687 + 0.997i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 930 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.0687 + 0.997i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(930\)    =    \(2 \cdot 3 \cdot 5 \cdot 31\)
Sign: $-0.0687 + 0.997i$
Analytic conductor: \(7.42608\)
Root analytic conductor: \(2.72508\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{930} (121, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 930,\ (\ :1/2),\ -0.0687 + 0.997i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.643832 - 0.689742i\)
\(L(\frac12)\) \(\approx\) \(0.643832 - 0.689742i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.809 - 0.587i)T \)
3 \( 1 + (-0.104 + 0.994i)T \)
5 \( 1 + (-0.5 + 0.866i)T \)
31 \( 1 + (-5.00 + 2.44i)T \)
good7 \( 1 + (1.89 - 0.403i)T + (6.39 - 2.84i)T^{2} \)
11 \( 1 + (-0.662 - 0.735i)T + (-1.14 + 10.9i)T^{2} \)
13 \( 1 + (-3.59 + 1.59i)T + (8.69 - 9.66i)T^{2} \)
17 \( 1 + (-1.32 + 1.47i)T + (-1.77 - 16.9i)T^{2} \)
19 \( 1 + (3.68 + 1.64i)T + (12.7 + 14.1i)T^{2} \)
23 \( 1 + (0.256 + 0.790i)T + (-18.6 + 13.5i)T^{2} \)
29 \( 1 + (-5.80 + 4.21i)T + (8.96 - 27.5i)T^{2} \)
37 \( 1 + (5.84 + 10.1i)T + (-18.5 + 32.0i)T^{2} \)
41 \( 1 + (-0.392 - 3.73i)T + (-40.1 + 8.52i)T^{2} \)
43 \( 1 + (9.85 + 4.38i)T + (28.7 + 31.9i)T^{2} \)
47 \( 1 + (8.50 + 6.17i)T + (14.5 + 44.6i)T^{2} \)
53 \( 1 + (-2.55 - 0.543i)T + (48.4 + 21.5i)T^{2} \)
59 \( 1 + (0.329 - 3.13i)T + (-57.7 - 12.2i)T^{2} \)
61 \( 1 + 3.14T + 61T^{2} \)
67 \( 1 + (4.08 - 7.08i)T + (-33.5 - 58.0i)T^{2} \)
71 \( 1 + (-8.87 - 1.88i)T + (64.8 + 28.8i)T^{2} \)
73 \( 1 + (7.84 + 8.71i)T + (-7.63 + 72.6i)T^{2} \)
79 \( 1 + (-3.77 + 4.19i)T + (-8.25 - 78.5i)T^{2} \)
83 \( 1 + (0.434 + 4.13i)T + (-81.1 + 17.2i)T^{2} \)
89 \( 1 + (-4.05 + 12.4i)T + (-72.0 - 52.3i)T^{2} \)
97 \( 1 + (-5.42 + 16.6i)T + (-78.4 - 57.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.789259620253987225842313594989, −8.763381916287491752379939884205, −8.369782213688314201184389918706, −7.29262285885627148620573706362, −6.41678608815714651753043086036, −5.89753044532430445459362977857, −4.68413609725926644986595798306, −3.26823724709244923257451425805, −1.96610024530698188006084913187, −0.54945519166628747279512198082, 1.50797016129001716537938730331, 3.04896120209559177821608249046, 3.66010489420469353898392582401, 4.86423047760376562147029249544, 6.35295450988356225401243225460, 6.62872427086996815105725968966, 8.169430242099284823048364928774, 8.644938716264572055857539128371, 9.659995583274900543517881236958, 10.21990296412154461097241984144

Graph of the $Z$-function along the critical line