Properties

Label 8-96e8-1.1-c1e4-0-0
Degree $8$
Conductor $7.214\times 10^{15}$
Sign $1$
Analytic cond. $2.93277\times 10^{7}$
Root an. cond. $8.57846$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 8·11-s + 16·19-s − 4·25-s − 32·41-s − 16·49-s + 32·67-s + 16·73-s − 8·83-s − 8·89-s + 32·97-s + 16·107-s − 72·113-s + 20·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 16·169-s + 173-s + 179-s + 181-s + 191-s + ⋯
L(s)  = 1  − 2.41·11-s + 3.67·19-s − 4/5·25-s − 4.99·41-s − 2.28·49-s + 3.90·67-s + 1.87·73-s − 0.878·83-s − 0.847·89-s + 3.24·97-s + 1.54·107-s − 6.77·113-s + 1.81·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 1.23·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{40} \cdot 3^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{40} \cdot 3^{8}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{40} \cdot 3^{8}\)
Sign: $1$
Analytic conductor: \(2.93277\times 10^{7}\)
Root analytic conductor: \(8.57846\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{40} \cdot 3^{8} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(0.5120273647\)
\(L(\frac12)\) \(\approx\) \(0.5120273647\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5$D_4$ \( 1 + 4 T^{2} + 6 T^{4} + 4 p^{2} T^{6} + p^{4} T^{8} \)
7$C_2^2$ \( ( 1 + 8 T^{2} + p^{2} T^{4} )^{2} \)
11$D_{4}$ \( ( 1 + 4 T + 14 T^{2} + 4 p T^{3} + p^{2} T^{4} )^{2} \)
13$C_2^2$ \( ( 1 + 8 T^{2} + p^{2} T^{4} )^{2} \)
17$C_2^2$ \( ( 1 + 22 T^{2} + p^{2} T^{4} )^{2} \)
19$D_{4}$ \( ( 1 - 8 T + 42 T^{2} - 8 p T^{3} + p^{2} T^{4} )^{2} \)
23$C_2^2$ \( ( 1 + 38 T^{2} + p^{2} T^{4} )^{2} \)
29$D_4\times C_2$ \( 1 + 4 T^{2} + 1254 T^{4} + 4 p^{2} T^{6} + p^{4} T^{8} \)
31$C_2^2$ \( ( 1 + 8 T^{2} + p^{2} T^{4} )^{2} \)
37$D_4\times C_2$ \( 1 + 64 T^{2} + 2034 T^{4} + 64 p^{2} T^{6} + p^{4} T^{8} \)
41$D_{4}$ \( ( 1 + 16 T + 134 T^{2} + 16 p T^{3} + p^{2} T^{4} )^{2} \)
43$C_2^2$ \( ( 1 + 74 T^{2} + p^{2} T^{4} )^{2} \)
47$C_2^2$ \( ( 1 + 86 T^{2} + p^{2} T^{4} )^{2} \)
53$D_4\times C_2$ \( 1 + 100 T^{2} + 6918 T^{4} + 100 p^{2} T^{6} + p^{4} T^{8} \)
59$C_2^2$ \( ( 1 - 74 T^{2} + p^{2} T^{4} )^{2} \)
61$D_4\times C_2$ \( 1 + 160 T^{2} + 12114 T^{4} + 160 p^{2} T^{6} + p^{4} T^{8} \)
67$D_{4}$ \( ( 1 - 16 T + 150 T^{2} - 16 p T^{3} + p^{2} T^{4} )^{2} \)
71$D_4\times C_2$ \( 1 - 20 T^{2} - 2106 T^{4} - 20 p^{2} T^{6} + p^{4} T^{8} \)
73$C_2$ \( ( 1 - 4 T + p T^{2} )^{4} \)
79$C_2^2$ \( ( 1 + 152 T^{2} + p^{2} T^{4} )^{2} \)
83$D_{4}$ \( ( 1 + 4 T + 158 T^{2} + 4 p T^{3} + p^{2} T^{4} )^{2} \)
89$D_{4}$ \( ( 1 + 4 T + 134 T^{2} + 4 p T^{3} + p^{2} T^{4} )^{2} \)
97$D_{4}$ \( ( 1 - 16 T + 210 T^{2} - 16 p T^{3} + p^{2} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−5.32218217076338776087378845436, −5.24877125761942395653581980033, −5.07286207799046451139928754220, −4.99544943605955847129179383319, −4.97477997798946062216910752427, −4.53053520632468673635568246616, −4.31595615453133632516911407141, −4.20119693391648844552622810215, −3.77466080009403382984837361321, −3.60067740340767504969527783673, −3.40306428363711878821273363672, −3.39911351030140576005704343636, −3.18165064916747955213383027514, −3.09392918313909945248440701971, −2.62885063979203899564604258674, −2.56868305126763267740821914931, −2.48102673452884035573784223375, −1.96069268115828206256797011800, −1.84098064779980799773282971471, −1.64828622725962021710806935589, −1.49196604579163407520933559571, −1.06271543149966272449908493664, −0.74273844302324181084161323046, −0.54812440877867198459561131451, −0.095885331095539377764696150050, 0.095885331095539377764696150050, 0.54812440877867198459561131451, 0.74273844302324181084161323046, 1.06271543149966272449908493664, 1.49196604579163407520933559571, 1.64828622725962021710806935589, 1.84098064779980799773282971471, 1.96069268115828206256797011800, 2.48102673452884035573784223375, 2.56868305126763267740821914931, 2.62885063979203899564604258674, 3.09392918313909945248440701971, 3.18165064916747955213383027514, 3.39911351030140576005704343636, 3.40306428363711878821273363672, 3.60067740340767504969527783673, 3.77466080009403382984837361321, 4.20119693391648844552622810215, 4.31595615453133632516911407141, 4.53053520632468673635568246616, 4.97477997798946062216910752427, 4.99544943605955847129179383319, 5.07286207799046451139928754220, 5.24877125761942395653581980033, 5.32218217076338776087378845436

Graph of the $Z$-function along the critical line