Properties

Label 8-96e8-1.1-c1e4-0-16
Degree $8$
Conductor $7.214\times 10^{15}$
Sign $1$
Analytic cond. $2.93277\times 10^{7}$
Root an. cond. $8.57846$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $4$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 12·11-s + 12·19-s − 8·25-s + 12·43-s − 12·49-s − 36·59-s + 4·67-s − 24·73-s − 12·83-s + 24·89-s − 12·107-s + 24·113-s + 52·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 24·169-s + 173-s + 179-s + 181-s + 191-s + ⋯
L(s)  = 1  − 3.61·11-s + 2.75·19-s − 8/5·25-s + 1.82·43-s − 1.71·49-s − 4.68·59-s + 0.488·67-s − 2.80·73-s − 1.31·83-s + 2.54·89-s − 1.16·107-s + 2.25·113-s + 4.72·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 1.84·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{40} \cdot 3^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{40} \cdot 3^{8}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{40} \cdot 3^{8}\)
Sign: $1$
Analytic conductor: \(2.93277\times 10^{7}\)
Root analytic conductor: \(8.57846\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(4\)
Selberg data: \((8,\ 2^{40} \cdot 3^{8} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5$C_2^2$ \( ( 1 + 4 T^{2} + p^{2} T^{4} )^{2} \)
7$D_4\times C_2$ \( 1 + 12 T^{2} + 86 T^{4} + 12 p^{2} T^{6} + p^{4} T^{8} \)
11$D_{4}$ \( ( 1 + 6 T + 28 T^{2} + 6 p T^{3} + p^{2} T^{4} )^{2} \)
13$D_4\times C_2$ \( 1 + 24 T^{2} + 290 T^{4} + 24 p^{2} T^{6} + p^{4} T^{8} \)
17$C_2^2$ \( ( 1 + 22 T^{2} + p^{2} T^{4} )^{2} \)
19$D_{4}$ \( ( 1 - 6 T + 44 T^{2} - 6 p T^{3} + p^{2} T^{4} )^{2} \)
23$D_4\times C_2$ \( 1 + 44 T^{2} + 1110 T^{4} + 44 p^{2} T^{6} + p^{4} T^{8} \)
29$C_2^2$ \( ( 1 + 52 T^{2} + p^{2} T^{4} )^{2} \)
31$C_2^2$ \( ( 1 + 30 T^{2} + p^{2} T^{4} )^{2} \)
37$D_4\times C_2$ \( 1 + 120 T^{2} + 6146 T^{4} + 120 p^{2} T^{6} + p^{4} T^{8} \)
41$C_2^2$ \( ( 1 + 34 T^{2} + p^{2} T^{4} )^{2} \)
43$D_{4}$ \( ( 1 - 6 T + 68 T^{2} - 6 p T^{3} + p^{2} T^{4} )^{2} \)
47$C_2^2$ \( ( 1 - 2 T^{2} + p^{2} T^{4} )^{2} \)
53$D_4\times C_2$ \( 1 + 56 T^{2} + 4674 T^{4} + 56 p^{2} T^{6} + p^{4} T^{8} \)
59$D_{4}$ \( ( 1 + 18 T + 196 T^{2} + 18 p T^{3} + p^{2} T^{4} )^{2} \)
61$D_4\times C_2$ \( 1 + 216 T^{2} + 18914 T^{4} + 216 p^{2} T^{6} + p^{4} T^{8} \)
67$D_{4}$ \( ( 1 - 2 T + 108 T^{2} - 2 p T^{3} + p^{2} T^{4} )^{2} \)
71$D_4\times C_2$ \( 1 + 236 T^{2} + 23574 T^{4} + 236 p^{2} T^{6} + p^{4} T^{8} \)
73$D_{4}$ \( ( 1 + 12 T + 170 T^{2} + 12 p T^{3} + p^{2} T^{4} )^{2} \)
79$D_4\times C_2$ \( 1 + 60 T^{2} + 1094 T^{4} + 60 p^{2} T^{6} + p^{4} T^{8} \)
83$D_{4}$ \( ( 1 + 6 T + 148 T^{2} + 6 p T^{3} + p^{2} T^{4} )^{2} \)
89$D_{4}$ \( ( 1 - 12 T + 202 T^{2} - 12 p T^{3} + p^{2} T^{4} )^{2} \)
97$C_2^2$ \( ( 1 + 182 T^{2} + p^{2} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−5.76586023163380844735023261844, −5.56305602401833478554533887826, −5.41340794334289390807313225086, −5.17083454201060076641059943229, −5.06584579977950825697189783505, −4.84483218690414016283951175678, −4.75691052501699095455252087629, −4.60656649933578785513102597679, −4.57561431435825007113081002319, −4.00795793533278256012302000519, −3.81019954474159096782987636640, −3.79026564454694821170095185796, −3.55897407453321397963713090078, −3.17829072932933740725510268348, −3.01362713234189801599954230886, −2.97866686790889399500362693118, −2.88522781551283893534036070942, −2.44171206121185618103970598907, −2.38717062268212557857373040493, −2.14635524754993739289785962849, −2.06819093831957746679997156532, −1.44465008667432960132642291136, −1.22020415911959115229984470536, −1.20671576777011779905573360833, −1.05140726223231886858073163856, 0, 0, 0, 0, 1.05140726223231886858073163856, 1.20671576777011779905573360833, 1.22020415911959115229984470536, 1.44465008667432960132642291136, 2.06819093831957746679997156532, 2.14635524754993739289785962849, 2.38717062268212557857373040493, 2.44171206121185618103970598907, 2.88522781551283893534036070942, 2.97866686790889399500362693118, 3.01362713234189801599954230886, 3.17829072932933740725510268348, 3.55897407453321397963713090078, 3.79026564454694821170095185796, 3.81019954474159096782987636640, 4.00795793533278256012302000519, 4.57561431435825007113081002319, 4.60656649933578785513102597679, 4.75691052501699095455252087629, 4.84483218690414016283951175678, 5.06584579977950825697189783505, 5.17083454201060076641059943229, 5.41340794334289390807313225086, 5.56305602401833478554533887826, 5.76586023163380844735023261844

Graph of the $Z$-function along the critical line