Properties

Label 8-92e4-1.1-c1e4-0-0
Degree $8$
Conductor $71639296$
Sign $1$
Analytic cond. $0.291245$
Root an. cond. $0.857101$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·2-s + 8·4-s − 8·8-s + 10·9-s − 4·13-s − 4·16-s − 40·18-s − 8·25-s + 16·26-s + 20·29-s + 32·32-s + 80·36-s − 12·41-s + 32·50-s − 32·52-s − 80·58-s − 64·64-s − 80·72-s − 4·73-s + 57·81-s + 48·82-s − 64·100-s − 32·101-s + 32·104-s + 160·116-s − 40·117-s − 16·121-s + ⋯
L(s)  = 1  − 2.82·2-s + 4·4-s − 2.82·8-s + 10/3·9-s − 1.10·13-s − 16-s − 9.42·18-s − 8/5·25-s + 3.13·26-s + 3.71·29-s + 5.65·32-s + 40/3·36-s − 1.87·41-s + 4.52·50-s − 4.43·52-s − 10.5·58-s − 8·64-s − 9.42·72-s − 0.468·73-s + 19/3·81-s + 5.30·82-s − 6.39·100-s − 3.18·101-s + 3.13·104-s + 14.8·116-s − 3.69·117-s − 1.45·121-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 71639296 ^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 71639296 ^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(71639296\)    =    \(2^{8} \cdot 23^{4}\)
Sign: $1$
Analytic conductor: \(0.291245\)
Root analytic conductor: \(0.857101\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 71639296,\ (\ :1/2, 1/2, 1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.2752625016\)
\(L(\frac12)\) \(\approx\) \(0.2752625016\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( ( 1 + p T + p T^{2} )^{2} \)
23$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
good3$C_2^2$ \( ( 1 - 5 T^{2} + p^{2} T^{4} )^{2} \)
5$C_2^2$ \( ( 1 + 4 T^{2} + p^{2} T^{4} )^{2} \)
7$C_2^2$ \( ( 1 + p^{2} T^{4} )^{2} \)
11$C_2^2$ \( ( 1 + 8 T^{2} + p^{2} T^{4} )^{2} \)
13$C_2$ \( ( 1 + T + p T^{2} )^{4} \)
17$C_2^2$ \( ( 1 - 20 T^{2} + p^{2} T^{4} )^{2} \)
19$C_2$ \( ( 1 + p T^{2} )^{4} \)
29$C_2$ \( ( 1 - 5 T + p T^{2} )^{4} \)
31$C_2^2$ \( ( 1 - 37 T^{2} + p^{2} T^{4} )^{2} \)
37$C_2^2$ \( ( 1 - 60 T^{2} + p^{2} T^{4} )^{2} \)
41$C_2$ \( ( 1 + 3 T + p T^{2} )^{4} \)
43$C_2^2$ \( ( 1 + 30 T^{2} + p^{2} T^{4} )^{2} \)
47$C_2^2$ \( ( 1 - 85 T^{2} + p^{2} T^{4} )^{2} \)
53$C_2^2$ \( ( 1 - 50 T^{2} + p^{2} T^{4} )^{2} \)
59$C_2^2$ \( ( 1 - 82 T^{2} + p^{2} T^{4} )^{2} \)
61$C_2$ \( ( 1 - p T^{2} )^{4} \)
67$C_2^2$ \( ( 1 + 120 T^{2} + p^{2} T^{4} )^{2} \)
71$C_2^2$ \( ( 1 - 117 T^{2} + p^{2} T^{4} )^{2} \)
73$C_2$ \( ( 1 + T + p T^{2} )^{4} \)
79$C_2$ \( ( 1 + p T^{2} )^{4} \)
83$C_2^2$ \( ( 1 + 40 T^{2} + p^{2} T^{4} )^{2} \)
89$C_2^2$ \( ( 1 - 122 T^{2} + p^{2} T^{4} )^{2} \)
97$C_2^2$ \( ( 1 - 180 T^{2} + p^{2} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.20502480746488792986201362112, −10.09274116297637992688470111299, −9.825539837070753814876225330174, −9.618615021447665228745127484935, −9.367053502642331049008925863655, −9.247705733171638758499153361632, −8.498728099871941280755118620706, −8.383404467759034348062976201851, −8.193847415573616937672891255914, −7.86073020523588095054832532109, −7.43859718267906602219076151765, −7.26909014234119246530747526477, −7.02967586411552443769009147024, −6.62028301150203796317331171312, −6.61271282106728524039149849772, −6.09537738027108013529802472511, −5.08997692610588456024831950803, −5.00498835510093202619703988026, −4.47854774855280332112947046928, −4.26217687523177261315411425500, −3.87646399942521206091126630017, −2.88379729438543074857811845954, −2.23664913918173950709089547972, −1.62806963452952433286508874001, −1.17512742785760637790603110853, 1.17512742785760637790603110853, 1.62806963452952433286508874001, 2.23664913918173950709089547972, 2.88379729438543074857811845954, 3.87646399942521206091126630017, 4.26217687523177261315411425500, 4.47854774855280332112947046928, 5.00498835510093202619703988026, 5.08997692610588456024831950803, 6.09537738027108013529802472511, 6.61271282106728524039149849772, 6.62028301150203796317331171312, 7.02967586411552443769009147024, 7.26909014234119246530747526477, 7.43859718267906602219076151765, 7.86073020523588095054832532109, 8.193847415573616937672891255914, 8.383404467759034348062976201851, 8.498728099871941280755118620706, 9.247705733171638758499153361632, 9.367053502642331049008925863655, 9.618615021447665228745127484935, 9.825539837070753814876225330174, 10.09274116297637992688470111299, 10.20502480746488792986201362112

Graph of the $Z$-function along the critical line