Properties

Label 2-91-1.1-c7-0-10
Degree $2$
Conductor $91$
Sign $1$
Analytic cond. $28.4270$
Root an. cond. $5.33170$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 9.01·2-s − 31.1·3-s − 46.6·4-s + 514.·5-s + 280.·6-s − 343·7-s + 1.57e3·8-s − 1.21e3·9-s − 4.64e3·10-s + 7.90e3·11-s + 1.45e3·12-s − 2.19e3·13-s + 3.09e3·14-s − 1.60e4·15-s − 8.22e3·16-s − 3.49e4·17-s + 1.09e4·18-s + 4.27e3·19-s − 2.40e4·20-s + 1.06e4·21-s − 7.12e4·22-s − 8.58e4·23-s − 4.90e4·24-s + 1.87e5·25-s + 1.98e4·26-s + 1.06e5·27-s + 1.60e4·28-s + ⋯
L(s)  = 1  − 0.797·2-s − 0.665·3-s − 0.364·4-s + 1.84·5-s + 0.530·6-s − 0.377·7-s + 1.08·8-s − 0.556·9-s − 1.46·10-s + 1.79·11-s + 0.242·12-s − 0.277·13-s + 0.301·14-s − 1.22·15-s − 0.502·16-s − 1.72·17-s + 0.443·18-s + 0.143·19-s − 0.671·20-s + 0.251·21-s − 1.42·22-s − 1.47·23-s − 0.724·24-s + 2.39·25-s + 0.221·26-s + 1.03·27-s + 0.137·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 91 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 91 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(91\)    =    \(7 \cdot 13\)
Sign: $1$
Analytic conductor: \(28.4270\)
Root analytic conductor: \(5.33170\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 91,\ (\ :7/2),\ 1)\)

Particular Values

\(L(4)\) \(\approx\) \(1.131335383\)
\(L(\frac12)\) \(\approx\) \(1.131335383\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 + 343T \)
13 \( 1 + 2.19e3T \)
good2 \( 1 + 9.01T + 128T^{2} \)
3 \( 1 + 31.1T + 2.18e3T^{2} \)
5 \( 1 - 514.T + 7.81e4T^{2} \)
11 \( 1 - 7.90e3T + 1.94e7T^{2} \)
17 \( 1 + 3.49e4T + 4.10e8T^{2} \)
19 \( 1 - 4.27e3T + 8.93e8T^{2} \)
23 \( 1 + 8.58e4T + 3.40e9T^{2} \)
29 \( 1 - 1.87e5T + 1.72e10T^{2} \)
31 \( 1 + 6.73e4T + 2.75e10T^{2} \)
37 \( 1 - 3.62e5T + 9.49e10T^{2} \)
41 \( 1 - 2.69e5T + 1.94e11T^{2} \)
43 \( 1 - 5.47e5T + 2.71e11T^{2} \)
47 \( 1 + 2.19e5T + 5.06e11T^{2} \)
53 \( 1 + 3.30e5T + 1.17e12T^{2} \)
59 \( 1 - 1.83e6T + 2.48e12T^{2} \)
61 \( 1 - 5.48e5T + 3.14e12T^{2} \)
67 \( 1 + 2.38e6T + 6.06e12T^{2} \)
71 \( 1 - 3.21e6T + 9.09e12T^{2} \)
73 \( 1 - 2.72e6T + 1.10e13T^{2} \)
79 \( 1 + 4.79e6T + 1.92e13T^{2} \)
83 \( 1 - 3.77e5T + 2.71e13T^{2} \)
89 \( 1 - 2.51e6T + 4.42e13T^{2} \)
97 \( 1 + 3.17e6T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.72649449340161646957131582162, −11.34733450555207593288786198371, −10.20258300523258572292990925571, −9.385504974733534495478344043296, −8.728510240469108854133559969085, −6.64617258124150932349738828872, −5.95692632376692712007070619726, −4.48981794086732733184712101048, −2.14147292648031274676478418209, −0.809377055164273670854553376071, 0.809377055164273670854553376071, 2.14147292648031274676478418209, 4.48981794086732733184712101048, 5.95692632376692712007070619726, 6.64617258124150932349738828872, 8.728510240469108854133559969085, 9.385504974733534495478344043296, 10.20258300523258572292990925571, 11.34733450555207593288786198371, 12.72649449340161646957131582162

Graph of the $Z$-function along the critical line