Properties

Label 2-91-1.1-c7-0-41
Degree $2$
Conductor $91$
Sign $-1$
Analytic cond. $28.4270$
Root an. cond. $5.33170$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 19.7·2-s + 5.55·3-s + 261.·4-s − 428.·5-s + 109.·6-s − 343·7-s + 2.62e3·8-s − 2.15e3·9-s − 8.45e3·10-s − 6.10e3·11-s + 1.45e3·12-s + 2.19e3·13-s − 6.76e3·14-s − 2.37e3·15-s + 1.84e4·16-s − 2.31e3·17-s − 4.25e4·18-s + 2.85e4·19-s − 1.11e5·20-s − 1.90e3·21-s − 1.20e5·22-s − 6.48e4·23-s + 1.45e4·24-s + 1.05e5·25-s + 4.33e4·26-s − 2.41e4·27-s − 8.95e4·28-s + ⋯
L(s)  = 1  + 1.74·2-s + 0.118·3-s + 2.04·4-s − 1.53·5-s + 0.207·6-s − 0.377·7-s + 1.81·8-s − 0.985·9-s − 2.67·10-s − 1.38·11-s + 0.242·12-s + 0.277·13-s − 0.659·14-s − 0.182·15-s + 1.12·16-s − 0.114·17-s − 1.71·18-s + 0.956·19-s − 3.12·20-s − 0.0448·21-s − 2.41·22-s − 1.11·23-s + 0.215·24-s + 1.35·25-s + 0.483·26-s − 0.235·27-s − 0.771·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 91 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 91 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(91\)    =    \(7 \cdot 13\)
Sign: $-1$
Analytic conductor: \(28.4270\)
Root analytic conductor: \(5.33170\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 91,\ (\ :7/2),\ -1)\)

Particular Values

\(L(4)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 + 343T \)
13 \( 1 - 2.19e3T \)
good2 \( 1 - 19.7T + 128T^{2} \)
3 \( 1 - 5.55T + 2.18e3T^{2} \)
5 \( 1 + 428.T + 7.81e4T^{2} \)
11 \( 1 + 6.10e3T + 1.94e7T^{2} \)
17 \( 1 + 2.31e3T + 4.10e8T^{2} \)
19 \( 1 - 2.85e4T + 8.93e8T^{2} \)
23 \( 1 + 6.48e4T + 3.40e9T^{2} \)
29 \( 1 + 2.53e4T + 1.72e10T^{2} \)
31 \( 1 - 2.75e5T + 2.75e10T^{2} \)
37 \( 1 + 8.94e4T + 9.49e10T^{2} \)
41 \( 1 + 5.67e5T + 1.94e11T^{2} \)
43 \( 1 + 3.98e5T + 2.71e11T^{2} \)
47 \( 1 - 9.22e5T + 5.06e11T^{2} \)
53 \( 1 - 7.93e5T + 1.17e12T^{2} \)
59 \( 1 + 1.62e6T + 2.48e12T^{2} \)
61 \( 1 + 3.68e5T + 3.14e12T^{2} \)
67 \( 1 + 2.48e6T + 6.06e12T^{2} \)
71 \( 1 + 3.76e6T + 9.09e12T^{2} \)
73 \( 1 - 2.08e5T + 1.10e13T^{2} \)
79 \( 1 - 5.15e6T + 1.92e13T^{2} \)
83 \( 1 + 3.78e6T + 2.71e13T^{2} \)
89 \( 1 + 1.12e7T + 4.42e13T^{2} \)
97 \( 1 - 1.55e7T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.07750894542445953315905138543, −11.67984252086260510523263391033, −10.50600202115378974634516614902, −8.339851420813811705915022060470, −7.37079941071196105835014686134, −5.93906198508755219794409312433, −4.79673481247408652321443049339, −3.57038044990405343388975565955, −2.74620011669511967285979721546, 0, 2.74620011669511967285979721546, 3.57038044990405343388975565955, 4.79673481247408652321443049339, 5.93906198508755219794409312433, 7.37079941071196105835014686134, 8.339851420813811705915022060470, 10.50600202115378974634516614902, 11.67984252086260510523263391033, 12.07750894542445953315905138543

Graph of the $Z$-function along the critical line