| L(s) = 1 | + (−1.97 − 1.14i)2-s + (−1.57 − 2.72i)3-s + (1.61 + 2.78i)4-s + (−1.84 − 1.06i)5-s + 7.19i·6-s + (2.62 − 0.331i)7-s − 2.78i·8-s + (−3.46 + 5.99i)9-s + (2.42 + 4.20i)10-s + (−0.267 + 0.154i)11-s + (5.07 − 8.78i)12-s + (−3.22 − 1.62i)13-s + (−5.57 − 2.34i)14-s + 6.69i·15-s + (0.0349 − 0.0605i)16-s + (−0.887 − 1.53i)17-s + ⋯ |
| L(s) = 1 | + (−1.39 − 0.807i)2-s + (−0.909 − 1.57i)3-s + (0.805 + 1.39i)4-s + (−0.823 − 0.475i)5-s + 2.93i·6-s + (0.992 − 0.125i)7-s − 0.985i·8-s + (−1.15 + 1.99i)9-s + (0.767 + 1.32i)10-s + (−0.0805 + 0.0465i)11-s + (1.46 − 2.53i)12-s + (−0.893 − 0.449i)13-s + (−1.48 − 0.626i)14-s + 1.72i·15-s + (0.00874 − 0.0151i)16-s + (−0.215 − 0.372i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 91 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.695 - 0.718i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 91 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.695 - 0.718i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.0935059 + 0.220858i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.0935059 + 0.220858i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 7 | \( 1 + (-2.62 + 0.331i)T \) |
| 13 | \( 1 + (3.22 + 1.62i)T \) |
| good | 2 | \( 1 + (1.97 + 1.14i)T + (1 + 1.73i)T^{2} \) |
| 3 | \( 1 + (1.57 + 2.72i)T + (-1.5 + 2.59i)T^{2} \) |
| 5 | \( 1 + (1.84 + 1.06i)T + (2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (0.267 - 0.154i)T + (5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (0.887 + 1.53i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (1.54 + 0.890i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-0.575 + 0.996i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 - 2.01T + 29T^{2} \) |
| 31 | \( 1 + (3.98 - 2.30i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (4.79 + 2.77i)T + (18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + 6.72iT - 41T^{2} \) |
| 43 | \( 1 + 1.52T + 43T^{2} \) |
| 47 | \( 1 + (-8.24 - 4.75i)T + (23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (3.72 + 6.44i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-7.03 + 4.06i)T + (29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-1.72 + 2.97i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-10.9 + 6.30i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 1.35iT - 71T^{2} \) |
| 73 | \( 1 + (10.2 - 5.94i)T + (36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-3.96 + 6.86i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + 11.2iT - 83T^{2} \) |
| 89 | \( 1 + (1.43 + 0.829i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + 7.66iT - 97T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.71882779691763632283957339050, −12.07620807063449957660975116230, −11.37169116678873163179038898205, −10.52800103623174862627226967363, −8.688265658914622979385461800110, −7.83578515051761164202203797217, −7.14448470408302776255186859144, −5.13240259690263190437673408152, −2.09050588412364098663800617053, −0.50021622570622079972071439271,
4.15645416054321842892882926793, 5.51297583246194646429381785208, 6.98108708132668289216333721760, 8.242690799041873408724823606066, 9.326533230173542393602306970810, 10.35026104963766537936659286930, 11.08558031731229090608118847061, 11.92261394369353858914981226122, 14.65390829121163923988435903206, 15.14338861842581494661291855189