Properties

Label 8-91e4-1.1-c1e4-0-2
Degree $8$
Conductor $68574961$
Sign $1$
Analytic cond. $0.278787$
Root an. cond. $0.852431$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·2-s + 3·3-s + 5·4-s + 6·5-s − 9·6-s − 2·7-s − 6·8-s + 7·9-s − 18·10-s + 3·11-s + 15·12-s − 10·13-s + 6·14-s + 18·15-s + 4·16-s − 6·17-s − 21·18-s − 3·19-s + 30·20-s − 6·21-s − 9·22-s − 18·24-s + 5·25-s + 30·26-s + 18·27-s − 10·28-s − 3·29-s + ⋯
L(s)  = 1  − 2.12·2-s + 1.73·3-s + 5/2·4-s + 2.68·5-s − 3.67·6-s − 0.755·7-s − 2.12·8-s + 7/3·9-s − 5.69·10-s + 0.904·11-s + 4.33·12-s − 2.77·13-s + 1.60·14-s + 4.64·15-s + 16-s − 1.45·17-s − 4.94·18-s − 0.688·19-s + 6.70·20-s − 1.30·21-s − 1.91·22-s − 3.67·24-s + 25-s + 5.88·26-s + 3.46·27-s − 1.88·28-s − 0.557·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 68574961 ^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 68574961 ^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(68574961\)    =    \(7^{4} \cdot 13^{4}\)
Sign: $1$
Analytic conductor: \(0.278787\)
Root analytic conductor: \(0.852431\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 68574961,\ (\ :1/2, 1/2, 1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.7359893723\)
\(L(\frac12)\) \(\approx\) \(0.7359893723\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad7$C_2$ \( ( 1 + T + T^{2} )^{2} \)
13$C_2$ \( ( 1 + 5 T + p T^{2} )^{2} \)
good2$C_2^2$$\times$$C_2^2$ \( ( 1 - T^{2} + p^{2} T^{4} )( 1 + 3 T + 5 T^{2} + 3 p T^{3} + p^{2} T^{4} ) \)
3$D_4\times C_2$ \( 1 - p T + 2 T^{2} - p T^{3} + 13 T^{4} - p^{2} T^{5} + 2 p^{2} T^{6} - p^{4} T^{7} + p^{4} T^{8} \)
5$D_{4}$ \( ( 1 - 3 T + 11 T^{2} - 3 p T^{3} + p^{2} T^{4} )^{2} \)
11$D_4\times C_2$ \( 1 - 3 T - 4 T^{2} + 27 T^{3} - 51 T^{4} + 27 p T^{5} - 4 p^{2} T^{6} - 3 p^{3} T^{7} + p^{4} T^{8} \)
17$D_4\times C_2$ \( 1 + 6 T + 13 T^{2} - 66 T^{3} - 372 T^{4} - 66 p T^{5} + 13 p^{2} T^{6} + 6 p^{3} T^{7} + p^{4} T^{8} \)
19$D_4\times C_2$ \( 1 + 3 T - 20 T^{2} - 27 T^{3} + 309 T^{4} - 27 p T^{5} - 20 p^{2} T^{6} + 3 p^{3} T^{7} + p^{4} T^{8} \)
23$C_2^3$ \( 1 - 26 T^{2} + 147 T^{4} - 26 p^{2} T^{6} + p^{4} T^{8} \)
29$D_4\times C_2$ \( 1 + 3 T - 20 T^{2} - 3 p T^{3} - 9 p T^{4} - 3 p^{2} T^{5} - 20 p^{2} T^{6} + 3 p^{3} T^{7} + p^{4} T^{8} \)
31$D_{4}$ \( ( 1 - 4 T + 21 T^{2} - 4 p T^{3} + p^{2} T^{4} )^{2} \)
37$C_2^2$ \( ( 1 + 4 T - 21 T^{2} + 4 p T^{3} + p^{2} T^{4} )^{2} \)
41$D_4\times C_2$ \( 1 + 6 T - 50 T^{2} + 24 T^{3} + 4239 T^{4} + 24 p T^{5} - 50 p^{2} T^{6} + 6 p^{3} T^{7} + p^{4} T^{8} \)
43$D_4\times C_2$ \( 1 + 5 T + 34 T^{2} - 475 T^{3} - 2843 T^{4} - 475 p T^{5} + 34 p^{2} T^{6} + 5 p^{3} T^{7} + p^{4} T^{8} \)
47$C_2^2$ \( ( 1 + 89 T^{2} + p^{2} T^{4} )^{2} \)
53$D_{4}$ \( ( 1 - 12 T + 137 T^{2} - 12 p T^{3} + p^{2} T^{4} )^{2} \)
59$C_2^3$ \( 1 - 113 T^{2} + 9288 T^{4} - 113 p^{2} T^{6} + p^{4} T^{8} \)
61$C_2^2$ \( ( 1 - 6 T - 25 T^{2} - 6 p T^{3} + p^{2} T^{4} )^{2} \)
67$D_4\times C_2$ \( 1 - 12 T + 19 T^{2} + 108 T^{3} + 1488 T^{4} + 108 p T^{5} + 19 p^{2} T^{6} - 12 p^{3} T^{7} + p^{4} T^{8} \)
71$C_4\times C_2$ \( 1 - 6 T + 10 T^{2} + 696 T^{3} - 6921 T^{4} + 696 p T^{5} + 10 p^{2} T^{6} - 6 p^{3} T^{7} + p^{4} T^{8} \)
73$C_2$ \( ( 1 + 2 T + p T^{2} )^{4} \)
79$C_2$ \( ( 1 - 4 T + p T^{2} )^{4} \)
83$C_2^2$ \( ( 1 + 121 T^{2} + p^{2} T^{4} )^{2} \)
89$D_4\times C_2$ \( 1 + 21 T + 184 T^{2} + 1659 T^{3} + 18879 T^{4} + 1659 p T^{5} + 184 p^{2} T^{6} + 21 p^{3} T^{7} + p^{4} T^{8} \)
97$D_4\times C_2$ \( 1 + 31 T + 538 T^{2} + 7099 T^{3} + 76303 T^{4} + 7099 p T^{5} + 538 p^{2} T^{6} + 31 p^{3} T^{7} + p^{4} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.27514006967594240862702061569, −9.962769946607979302328272250088, −9.659386416556933473818658366444, −9.607390863362311771317061218147, −9.348664020825086494977289568415, −9.265014826457146716128406306395, −8.709274848606384387222421860697, −8.492197260027017056801967848497, −8.402632954584516310066139809028, −8.006658353264053116592906854008, −7.32204083940866826485613760626, −7.20714144755062709813776420676, −6.90104654289965789026058436281, −6.70797965088300389274497248723, −6.42749491066853244813148334199, −5.95985015030157177617146234250, −5.36404778182236042436944321575, −5.21395122041646884883505643151, −4.41789987200615332892665062700, −4.18520982427647242351655117503, −3.47108356443198913441640188356, −2.61673524597116849145203397389, −2.42080627102110695534675623945, −2.02725007638130017726342416419, −1.80214490826245528977902820077, 1.80214490826245528977902820077, 2.02725007638130017726342416419, 2.42080627102110695534675623945, 2.61673524597116849145203397389, 3.47108356443198913441640188356, 4.18520982427647242351655117503, 4.41789987200615332892665062700, 5.21395122041646884883505643151, 5.36404778182236042436944321575, 5.95985015030157177617146234250, 6.42749491066853244813148334199, 6.70797965088300389274497248723, 6.90104654289965789026058436281, 7.20714144755062709813776420676, 7.32204083940866826485613760626, 8.006658353264053116592906854008, 8.402632954584516310066139809028, 8.492197260027017056801967848497, 8.709274848606384387222421860697, 9.265014826457146716128406306395, 9.348664020825086494977289568415, 9.607390863362311771317061218147, 9.659386416556933473818658366444, 9.962769946607979302328272250088, 10.27514006967594240862702061569

Graph of the $Z$-function along the critical line