| L(s) = 1 | + 4·3-s + 4-s + 2·7-s + 6·9-s + 6·11-s + 4·12-s + 3·13-s − 3·16-s + 17-s + 8·21-s − 4·27-s + 2·28-s − 3·29-s + 12·31-s + 24·33-s + 6·36-s + 11·37-s + 12·39-s + 3·41-s − 8·43-s + 6·44-s − 14·47-s − 12·48-s − 6·49-s + 4·51-s + 3·52-s + 11·53-s + ⋯ |
| L(s) = 1 | + 2.30·3-s + 1/2·4-s + 0.755·7-s + 2·9-s + 1.80·11-s + 1.15·12-s + 0.832·13-s − 3/4·16-s + 0.242·17-s + 1.74·21-s − 0.769·27-s + 0.377·28-s − 0.557·29-s + 2.15·31-s + 4.17·33-s + 36-s + 1.80·37-s + 1.92·39-s + 0.468·41-s − 1.21·43-s + 0.904·44-s − 2.04·47-s − 1.73·48-s − 6/7·49-s + 0.560·51-s + 0.416·52-s + 1.51·53-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 81450625 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 81450625 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(13.55364331\) |
| \(L(\frac12)\) |
\(\approx\) |
\(13.55364331\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.006320665930130547081588906133, −7.84567053183210594336980460417, −7.27023676897772042536200799632, −6.89461646952033672066651631672, −6.71736474138147691284895078986, −6.17022431635392131465161080427, −6.11765142509953107341377678580, −5.57868449882991614651330191671, −4.86537552009320521786910250041, −4.77810777971759326843641108417, −4.12489666866118289696953721317, −3.93314589604097448878423552544, −3.60022980967259409330785924700, −3.21122708075321220728376152156, −2.85184632573946110049644129959, −2.39193696113166877698221588979, −2.11728694068608996809464319744, −1.65689531816417491680861591721, −1.27990616664932516970826645625, −0.68606397342114157715312823560,
0.68606397342114157715312823560, 1.27990616664932516970826645625, 1.65689531816417491680861591721, 2.11728694068608996809464319744, 2.39193696113166877698221588979, 2.85184632573946110049644129959, 3.21122708075321220728376152156, 3.60022980967259409330785924700, 3.93314589604097448878423552544, 4.12489666866118289696953721317, 4.77810777971759326843641108417, 4.86537552009320521786910250041, 5.57868449882991614651330191671, 6.11765142509953107341377678580, 6.17022431635392131465161080427, 6.71736474138147691284895078986, 6.89461646952033672066651631672, 7.27023676897772042536200799632, 7.84567053183210594336980460417, 8.006320665930130547081588906133