Properties

Label 2-30e2-1.1-c5-0-34
Degree $2$
Conductor $900$
Sign $-1$
Analytic cond. $144.345$
Root an. cond. $12.0143$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 147.·7-s − 662.·11-s + 629.·13-s + 1.08e3·17-s − 2.52e3·19-s + 1.80e3·23-s − 6.23e3·29-s + 5.61e3·31-s + 1.19e3·37-s − 1.00e4·41-s − 1.07e4·43-s + 3.80e3·47-s + 5.02e3·49-s − 1.58e4·53-s − 1.73e3·59-s + 1.11e4·61-s + 4.86e4·67-s − 6.89e4·71-s − 8.06e4·73-s − 9.78e4·77-s + 8.20e4·79-s + 8.56e4·83-s − 2.58e4·89-s + 9.30e4·91-s − 9.93e3·97-s − 4.41e4·101-s + 1.31e5·103-s + ⋯
L(s)  = 1  + 1.13·7-s − 1.65·11-s + 1.03·13-s + 0.908·17-s − 1.60·19-s + 0.710·23-s − 1.37·29-s + 1.04·31-s + 0.144·37-s − 0.930·41-s − 0.885·43-s + 0.251·47-s + 0.298·49-s − 0.772·53-s − 0.0648·59-s + 0.385·61-s + 1.32·67-s − 1.62·71-s − 1.77·73-s − 1.88·77-s + 1.47·79-s + 1.36·83-s − 0.345·89-s + 1.17·91-s − 0.107·97-s − 0.430·101-s + 1.22·103-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 900 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 900 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(900\)    =    \(2^{2} \cdot 3^{2} \cdot 5^{2}\)
Sign: $-1$
Analytic conductor: \(144.345\)
Root analytic conductor: \(12.0143\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 900,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
good7 \( 1 - 147.T + 1.68e4T^{2} \)
11 \( 1 + 662.T + 1.61e5T^{2} \)
13 \( 1 - 629.T + 3.71e5T^{2} \)
17 \( 1 - 1.08e3T + 1.41e6T^{2} \)
19 \( 1 + 2.52e3T + 2.47e6T^{2} \)
23 \( 1 - 1.80e3T + 6.43e6T^{2} \)
29 \( 1 + 6.23e3T + 2.05e7T^{2} \)
31 \( 1 - 5.61e3T + 2.86e7T^{2} \)
37 \( 1 - 1.19e3T + 6.93e7T^{2} \)
41 \( 1 + 1.00e4T + 1.15e8T^{2} \)
43 \( 1 + 1.07e4T + 1.47e8T^{2} \)
47 \( 1 - 3.80e3T + 2.29e8T^{2} \)
53 \( 1 + 1.58e4T + 4.18e8T^{2} \)
59 \( 1 + 1.73e3T + 7.14e8T^{2} \)
61 \( 1 - 1.11e4T + 8.44e8T^{2} \)
67 \( 1 - 4.86e4T + 1.35e9T^{2} \)
71 \( 1 + 6.89e4T + 1.80e9T^{2} \)
73 \( 1 + 8.06e4T + 2.07e9T^{2} \)
79 \( 1 - 8.20e4T + 3.07e9T^{2} \)
83 \( 1 - 8.56e4T + 3.93e9T^{2} \)
89 \( 1 + 2.58e4T + 5.58e9T^{2} \)
97 \( 1 + 9.93e3T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.651019904189100464906892614887, −8.183869995799523271064795447888, −7.46283491804060302503512644355, −6.26696545416944167129545242941, −5.34240824882673633972297664976, −4.65346651795094176677449636682, −3.47341994619888123025227796589, −2.31667957692507180839250479226, −1.32949060373189231350106413096, 0, 1.32949060373189231350106413096, 2.31667957692507180839250479226, 3.47341994619888123025227796589, 4.65346651795094176677449636682, 5.34240824882673633972297664976, 6.26696545416944167129545242941, 7.46283491804060302503512644355, 8.183869995799523271064795447888, 8.651019904189100464906892614887

Graph of the $Z$-function along the critical line