Properties

Label 8-30e8-1.1-c2e4-0-7
Degree $8$
Conductor $656100000000$
Sign $1$
Analytic cond. $361668.$
Root an. cond. $4.95209$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 48·19-s − 152·31-s − 104·49-s − 280·61-s − 120·79-s − 296·109-s + 288·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 152·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + 227-s + ⋯
L(s)  = 1  − 2.52·19-s − 4.90·31-s − 2.12·49-s − 4.59·61-s − 1.51·79-s − 2.71·109-s + 2.38·121-s + 0.00787·127-s + 0.00763·131-s + 0.00729·137-s + 0.00719·139-s + 0.00671·149-s + 0.00662·151-s + 0.00636·157-s + 0.00613·163-s + 0.00598·167-s + 0.899·169-s + 0.00578·173-s + 0.00558·179-s + 0.00552·181-s + 0.00523·191-s + 0.00518·193-s + 0.00507·197-s + 0.00502·199-s + 0.00473·211-s + 0.00448·223-s + 0.00440·227-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 3^{8} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(3-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 3^{8} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s+1)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{8} \cdot 3^{8} \cdot 5^{8}\)
Sign: $1$
Analytic conductor: \(361668.\)
Root analytic conductor: \(4.95209\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{8} \cdot 3^{8} \cdot 5^{8} ,\ ( \ : 1, 1, 1, 1 ),\ 1 )\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.8015814706\)
\(L(\frac12)\) \(\approx\) \(0.8015814706\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
good7$C_2^2$ \( ( 1 + 52 T^{2} + p^{4} T^{4} )^{2} \)
11$C_2^2$ \( ( 1 - 144 T^{2} + p^{4} T^{4} )^{2} \)
13$C_2^2$ \( ( 1 - 76 T^{2} + p^{4} T^{4} )^{2} \)
17$C_2^2$ \( ( 1 - 210 T^{2} + p^{4} T^{4} )^{2} \)
19$C_2$ \( ( 1 + 12 T + p^{2} T^{2} )^{4} \)
23$C_2^2$ \( ( 1 - 42 p T^{2} + p^{4} T^{4} )^{2} \)
29$C_2^2$ \( ( 1 - 1610 T^{2} + p^{4} T^{4} )^{2} \)
31$C_2$ \( ( 1 + 38 T + p^{2} T^{2} )^{4} \)
37$C_2^2$ \( ( 1 + 2692 T^{2} + p^{4} T^{4} )^{2} \)
41$C_2^2$ \( ( 1 + 1440 T^{2} + p^{4} T^{4} )^{2} \)
43$C_2^2$ \( ( 1 - 902 T^{2} + p^{4} T^{4} )^{2} \)
47$C_2^2$ \( ( 1 + 1470 T^{2} + p^{4} T^{4} )^{2} \)
53$C_1$$\times$$C_1$ \( ( 1 - p T )^{4}( 1 + p T )^{4} \)
59$C_2^2$ \( ( 1 + p^{4} T^{4} )^{2} \)
61$C_2$ \( ( 1 + 70 T + p^{2} T^{2} )^{4} \)
67$C_2^2$ \( ( 1 - 2798 T^{2} + p^{4} T^{4} )^{2} \)
71$C_2^2$ \( ( 1 + 4030 T^{2} + p^{4} T^{4} )^{2} \)
73$C_2^2$ \( ( 1 + 10474 T^{2} + p^{4} T^{4} )^{2} \)
79$C_2$ \( ( 1 + 30 T + p^{2} T^{2} )^{4} \)
83$C_2^2$ \( ( 1 + 4254 T^{2} + p^{4} T^{4} )^{2} \)
89$C_2^2$ \( ( 1 - 14784 T^{2} + p^{4} T^{4} )^{2} \)
97$C_2^2$ \( ( 1 + 9802 T^{2} + p^{4} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.97492945648656685065131804051, −6.79002217020855822221016092016, −6.71993439428011531682872726217, −6.23726847814968309774348929963, −6.03946445438410558535678368430, −6.03125911108660414006290905697, −5.77543101874315172434024204729, −5.43125646093775155182878869347, −5.14123772811048715190374210306, −4.88845811926074045578706830482, −4.79152775264693691450513299918, −4.38629594644032385999612074794, −4.15590735130681612774565201522, −3.83937486525708878971231047322, −3.80541482826874959778819830934, −3.41988504735916608520818354052, −3.01754997472860181795635429116, −2.88007375832609284570793818231, −2.54541287417446720637653757976, −1.93208644670924510571748527132, −1.84104342353497849701447755421, −1.61474841748215178196031196226, −1.42029980461925101796746548800, −0.32579053159555237919962059638, −0.27702016865333959954879709362, 0.27702016865333959954879709362, 0.32579053159555237919962059638, 1.42029980461925101796746548800, 1.61474841748215178196031196226, 1.84104342353497849701447755421, 1.93208644670924510571748527132, 2.54541287417446720637653757976, 2.88007375832609284570793818231, 3.01754997472860181795635429116, 3.41988504735916608520818354052, 3.80541482826874959778819830934, 3.83937486525708878971231047322, 4.15590735130681612774565201522, 4.38629594644032385999612074794, 4.79152775264693691450513299918, 4.88845811926074045578706830482, 5.14123772811048715190374210306, 5.43125646093775155182878869347, 5.77543101874315172434024204729, 6.03125911108660414006290905697, 6.03946445438410558535678368430, 6.23726847814968309774348929963, 6.71993439428011531682872726217, 6.79002217020855822221016092016, 6.97492945648656685065131804051

Graph of the $Z$-function along the critical line