Properties

Label 4-30e4-1.1-c1e2-0-2
Degree $4$
Conductor $810000$
Sign $1$
Analytic cond. $51.6463$
Root an. cond. $2.68077$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 16·19-s − 8·31-s − 2·49-s + 28·61-s + 8·79-s − 4·109-s − 22·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 22·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + 227-s + ⋯
L(s)  = 1  − 3.67·19-s − 1.43·31-s − 2/7·49-s + 3.58·61-s + 0.900·79-s − 0.383·109-s − 2·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 1.69·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + 0.0712·197-s + 0.0708·199-s + 0.0688·211-s + 0.0669·223-s + 0.0663·227-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 810000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 810000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(810000\)    =    \(2^{4} \cdot 3^{4} \cdot 5^{4}\)
Sign: $1$
Analytic conductor: \(51.6463\)
Root analytic conductor: \(2.68077\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 810000,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.179668793\)
\(L(\frac12)\) \(\approx\) \(1.179668793\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
good7$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
11$C_2$ \( ( 1 + p T^{2} )^{2} \)
13$C_2^2$ \( 1 - 22 T^{2} + p^{2} T^{4} \)
17$C_2$ \( ( 1 - p T^{2} )^{2} \)
19$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
23$C_2$ \( ( 1 - p T^{2} )^{2} \)
29$C_2$ \( ( 1 + p T^{2} )^{2} \)
31$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
37$C_2^2$ \( 1 + 26 T^{2} + p^{2} T^{4} \)
41$C_2$ \( ( 1 + p T^{2} )^{2} \)
43$C_2^2$ \( 1 - 22 T^{2} + p^{2} T^{4} \)
47$C_2$ \( ( 1 - p T^{2} )^{2} \)
53$C_2$ \( ( 1 - p T^{2} )^{2} \)
59$C_2$ \( ( 1 + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - 14 T + p T^{2} )^{2} \)
67$C_2^2$ \( 1 + 122 T^{2} + p^{2} T^{4} \)
71$C_2$ \( ( 1 + p T^{2} )^{2} \)
73$C_2^2$ \( 1 - 46 T^{2} + p^{2} T^{4} \)
79$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
83$C_2$ \( ( 1 - p T^{2} )^{2} \)
89$C_2$ \( ( 1 + p T^{2} )^{2} \)
97$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.34549328126821966547238549947, −10.04029464851918290155355129228, −9.408910698883420418039084080263, −8.975419529647267063734345394210, −8.702397642281400021030677448643, −8.114318136365360461235917057505, −8.083068790909649331171553212913, −7.26807289819363886526191691576, −6.77232627370478689111305337850, −6.54957151802260648839986603555, −6.11075549340203458669385944203, −5.43364868088387971316187533598, −5.16675416129077266926274467116, −4.27205744345434838740889966837, −4.16912952229599195397693272089, −3.63459964505567699601710174536, −2.80506258313838782912658044500, −2.09726352036911341379616119879, −1.86995435805798286223267580506, −0.49716465820202011748401020942, 0.49716465820202011748401020942, 1.86995435805798286223267580506, 2.09726352036911341379616119879, 2.80506258313838782912658044500, 3.63459964505567699601710174536, 4.16912952229599195397693272089, 4.27205744345434838740889966837, 5.16675416129077266926274467116, 5.43364868088387971316187533598, 6.11075549340203458669385944203, 6.54957151802260648839986603555, 6.77232627370478689111305337850, 7.26807289819363886526191691576, 8.083068790909649331171553212913, 8.114318136365360461235917057505, 8.702397642281400021030677448643, 8.975419529647267063734345394210, 9.408910698883420418039084080263, 10.04029464851918290155355129228, 10.34549328126821966547238549947

Graph of the $Z$-function along the critical line