# Properties

 Degree $2$ Conductor $90$ Sign $0.178 - 0.983i$ Motivic weight $5$ Primitive yes Self-dual no Analytic rank $0$

# Related objects

## Dirichlet series

 L(s)  = 1 − 4i·2-s − 16·4-s + (−55 − 10i)5-s − 158i·7-s + 64i·8-s + (−40 + 220i)10-s + 148·11-s + 684i·13-s − 632·14-s + 256·16-s + 2.04e3i·17-s − 2.22e3·19-s + (880 + 160i)20-s − 592i·22-s + 1.24e3i·23-s + ⋯
 L(s)  = 1 − 0.707i·2-s − 0.5·4-s + (−0.983 − 0.178i)5-s − 1.21i·7-s + 0.353i·8-s + (−0.126 + 0.695i)10-s + 0.368·11-s + 1.12i·13-s − 0.861·14-s + 0.250·16-s + 1.71i·17-s − 1.41·19-s + (0.491 + 0.0894i)20-s − 0.260i·22-s + 0.491i·23-s + ⋯

## Functional equation

\begin{aligned}\Lambda(s)=\mathstrut & 90 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.178 - 0.983i)\, \overline{\Lambda}(6-s) \end{aligned}
\begin{aligned}\Lambda(s)=\mathstrut & 90 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (0.178 - 0.983i)\, \overline{\Lambda}(1-s) \end{aligned}

## Invariants

 Degree: $$2$$ Conductor: $$90$$    =    $$2 \cdot 3^{2} \cdot 5$$ Sign: $0.178 - 0.983i$ Motivic weight: $$5$$ Character: $\chi_{90} (19, \cdot )$ Primitive: yes Self-dual: no Analytic rank: $$0$$ Selberg data: $$(2,\ 90,\ (\ :5/2),\ 0.178 - 0.983i)$$

## Particular Values

 $$L(3)$$ $$\approx$$ $$0.314475 + 0.262453i$$ $$L(\frac12)$$ $$\approx$$ $$0.314475 + 0.262453i$$ $$L(\frac{7}{2})$$ not available $$L(1)$$ not available

## Euler product

$$L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}$$
$p$$F_p(T)$
bad2 $$1 + 4iT$$
3 $$1$$
5 $$1 + (55 + 10i)T$$
good7 $$1 + 158iT - 1.68e4T^{2}$$
11 $$1 - 148T + 1.61e5T^{2}$$
13 $$1 - 684iT - 3.71e5T^{2}$$
17 $$1 - 2.04e3iT - 1.41e6T^{2}$$
19 $$1 + 2.22e3T + 2.47e6T^{2}$$
23 $$1 - 1.24e3iT - 6.43e6T^{2}$$
29 $$1 + 270T + 2.05e7T^{2}$$
31 $$1 + 2.04e3T + 2.86e7T^{2}$$
37 $$1 - 4.37e3iT - 6.93e7T^{2}$$
41 $$1 - 2.39e3T + 1.15e8T^{2}$$
43 $$1 - 2.29e3iT - 1.47e8T^{2}$$
47 $$1 + 1.06e4iT - 2.29e8T^{2}$$
53 $$1 + 2.96e3iT - 4.18e8T^{2}$$
59 $$1 + 3.97e4T + 7.14e8T^{2}$$
61 $$1 + 4.22e4T + 8.44e8T^{2}$$
67 $$1 + 3.20e4iT - 1.35e9T^{2}$$
71 $$1 - 4.24e3T + 1.80e9T^{2}$$
73 $$1 - 3.01e4iT - 2.07e9T^{2}$$
79 $$1 + 3.52e4T + 3.07e9T^{2}$$
83 $$1 - 2.78e4iT - 3.93e9T^{2}$$
89 $$1 + 8.52e4T + 5.58e9T^{2}$$
97 $$1 - 9.72e4iT - 8.58e9T^{2}$$
$$L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}$$