Properties

Label 2-3e2-1.1-c7-0-1
Degree $2$
Conductor $9$
Sign $1$
Analytic cond. $2.81146$
Root an. cond. $1.67674$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 18.9·2-s + 232·4-s − 303.·5-s + 260·7-s + 1.97e3·8-s − 5.76e3·10-s − 6.07e3·11-s + 6.89e3·13-s + 4.93e3·14-s + 7.74e3·16-s + 2.36e4·17-s + 3.31e4·19-s − 7.04e4·20-s − 1.15e5·22-s + 3.15e4·23-s + 1.40e4·25-s + 1.30e5·26-s + 6.03e4·28-s − 1.38e5·29-s + 1.50e3·31-s − 1.05e5·32-s + 4.49e5·34-s − 7.89e4·35-s − 3.80e5·37-s + 6.29e5·38-s − 5.99e5·40-s + 8.80e4·41-s + ⋯
L(s)  = 1  + 1.67·2-s + 1.81·4-s − 1.08·5-s + 0.286·7-s + 1.36·8-s − 1.82·10-s − 1.37·11-s + 0.869·13-s + 0.480·14-s + 0.472·16-s + 1.16·17-s + 1.10·19-s − 1.96·20-s − 2.30·22-s + 0.541·23-s + 0.179·25-s + 1.45·26-s + 0.519·28-s − 1.05·29-s + 0.00909·31-s − 0.569·32-s + 1.96·34-s − 0.311·35-s − 1.23·37-s + 1.86·38-s − 1.47·40-s + 0.199·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9\)    =    \(3^{2}\)
Sign: $1$
Analytic conductor: \(2.81146\)
Root analytic conductor: \(1.67674\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 9,\ (\ :7/2),\ 1)\)

Particular Values

\(L(4)\) \(\approx\) \(2.674512201\)
\(L(\frac12)\) \(\approx\) \(2.674512201\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
good2 \( 1 - 18.9T + 128T^{2} \)
5 \( 1 + 303.T + 7.81e4T^{2} \)
7 \( 1 - 260T + 8.23e5T^{2} \)
11 \( 1 + 6.07e3T + 1.94e7T^{2} \)
13 \( 1 - 6.89e3T + 6.27e7T^{2} \)
17 \( 1 - 2.36e4T + 4.10e8T^{2} \)
19 \( 1 - 3.31e4T + 8.93e8T^{2} \)
23 \( 1 - 3.15e4T + 3.40e9T^{2} \)
29 \( 1 + 1.38e5T + 1.72e10T^{2} \)
31 \( 1 - 1.50e3T + 2.75e10T^{2} \)
37 \( 1 + 3.80e5T + 9.49e10T^{2} \)
41 \( 1 - 8.80e4T + 1.94e11T^{2} \)
43 \( 1 - 7.64e3T + 2.71e11T^{2} \)
47 \( 1 - 5.65e5T + 5.06e11T^{2} \)
53 \( 1 - 1.03e6T + 1.17e12T^{2} \)
59 \( 1 + 2.70e6T + 2.48e12T^{2} \)
61 \( 1 + 9.88e5T + 3.14e12T^{2} \)
67 \( 1 - 3.85e6T + 6.06e12T^{2} \)
71 \( 1 - 4.22e6T + 9.09e12T^{2} \)
73 \( 1 + 2.00e6T + 1.10e13T^{2} \)
79 \( 1 - 2.69e6T + 1.92e13T^{2} \)
83 \( 1 - 2.71e6T + 2.71e13T^{2} \)
89 \( 1 - 7.74e6T + 4.42e13T^{2} \)
97 \( 1 + 1.29e7T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−20.38969099516560214293303929997, −18.62599180950191572881612873522, −16.09721304205976252787375380795, −15.22933754465762612426156489372, −13.72863634433878072038780045570, −12.34634256857787230273205608094, −11.08169161750989189708347039487, −7.64730526586133418050975846402, −5.31877812668296384837894467469, −3.45528160667815042061928596501, 3.45528160667815042061928596501, 5.31877812668296384837894467469, 7.64730526586133418050975846402, 11.08169161750989189708347039487, 12.34634256857787230273205608094, 13.72863634433878072038780045570, 15.22933754465762612426156489372, 16.09721304205976252787375380795, 18.62599180950191572881612873522, 20.38969099516560214293303929997

Graph of the $Z$-function along the critical line