Properties

Label 4-3e4-1.1-c37e2-0-0
Degree $4$
Conductor $81$
Sign $1$
Analytic cond. $6090.65$
Root an. cond. $8.83417$
Motivic weight $37$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.94e5·2-s − 9.96e10·4-s − 5.52e12·5-s − 3.44e15·7-s − 1.93e16·8-s − 1.07e18·10-s + 2.67e19·11-s + 5.30e20·13-s − 6.70e20·14-s − 3.76e21·16-s + 8.94e22·17-s + 3.73e23·19-s + 5.51e23·20-s + 5.19e24·22-s + 2.62e25·23-s − 2.20e23·25-s + 1.03e26·26-s + 3.43e26·28-s + 1.27e27·29-s + 2.61e26·31-s − 4.40e27·32-s + 1.73e28·34-s + 1.90e28·35-s − 6.80e28·37-s + 7.25e28·38-s + 1.07e29·40-s + 1.26e30·41-s + ⋯
L(s)  = 1  + 0.524·2-s − 0.725·4-s − 0.648·5-s − 0.800·7-s − 0.380·8-s − 0.339·10-s + 1.44·11-s + 1.30·13-s − 0.419·14-s − 0.199·16-s + 1.54·17-s + 0.822·19-s + 0.470·20-s + 0.760·22-s + 1.68·23-s − 0.00302·25-s + 0.686·26-s + 0.580·28-s + 1.12·29-s + 0.0671·31-s − 0.628·32-s + 0.808·34-s + 0.518·35-s − 0.662·37-s + 0.431·38-s + 0.246·40-s + 1.83·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 81 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(38-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 81 ^{s/2} \, \Gamma_{\C}(s+37/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(81\)    =    \(3^{4}\)
Sign: $1$
Analytic conductor: \(6090.65\)
Root analytic conductor: \(8.83417\)
Motivic weight: \(37\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 81,\ (\ :37/2, 37/2),\ 1)\)

Particular Values

\(L(19)\) \(\approx\) \(3.654604134\)
\(L(\frac12)\) \(\approx\) \(3.654604134\)
\(L(\frac{39}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3 \( 1 \)
good2$D_{4}$ \( 1 - 6075 p^{5} T + 16781555 p^{13} T^{2} - 6075 p^{42} T^{3} + p^{74} T^{4} \)
5$D_{4}$ \( 1 + 221183375436 p^{2} T + \)\(39\!\cdots\!58\)\( p^{7} T^{2} + 221183375436 p^{39} T^{3} + p^{74} T^{4} \)
7$D_{4}$ \( 1 + 70376407214000 p^{2} T + \)\(15\!\cdots\!50\)\( p^{5} T^{2} + 70376407214000 p^{39} T^{3} + p^{74} T^{4} \)
11$D_{4}$ \( 1 - 2430366941349867096 p T + \)\(53\!\cdots\!46\)\( p^{3} T^{2} - 2430366941349867096 p^{38} T^{3} + p^{74} T^{4} \)
13$D_{4}$ \( 1 - 40813980127225629100 p T + \)\(14\!\cdots\!70\)\( p^{3} T^{2} - 40813980127225629100 p^{38} T^{3} + p^{74} T^{4} \)
17$D_{4}$ \( 1 - \)\(52\!\cdots\!00\)\( p T + \)\(17\!\cdots\!10\)\( p^{3} T^{2} - \)\(52\!\cdots\!00\)\( p^{38} T^{3} + p^{74} T^{4} \)
19$D_{4}$ \( 1 - \)\(37\!\cdots\!20\)\( T + \)\(10\!\cdots\!62\)\( p T^{2} - \)\(37\!\cdots\!20\)\( p^{37} T^{3} + p^{74} T^{4} \)
23$D_{4}$ \( 1 - \)\(26\!\cdots\!00\)\( T + \)\(21\!\cdots\!70\)\( p T^{2} - \)\(26\!\cdots\!00\)\( p^{37} T^{3} + p^{74} T^{4} \)
29$D_{4}$ \( 1 - \)\(43\!\cdots\!80\)\( p T + \)\(26\!\cdots\!98\)\( p^{2} T^{2} - \)\(43\!\cdots\!80\)\( p^{38} T^{3} + p^{74} T^{4} \)
31$D_{4}$ \( 1 - \)\(84\!\cdots\!04\)\( p T + \)\(25\!\cdots\!06\)\( p^{2} T^{2} - \)\(84\!\cdots\!04\)\( p^{38} T^{3} + p^{74} T^{4} \)
37$D_{4}$ \( 1 + \)\(49\!\cdots\!00\)\( p^{2} T + \)\(13\!\cdots\!90\)\( T^{2} + \)\(49\!\cdots\!00\)\( p^{39} T^{3} + p^{74} T^{4} \)
41$D_{4}$ \( 1 - \)\(12\!\cdots\!36\)\( T + \)\(12\!\cdots\!86\)\( T^{2} - \)\(12\!\cdots\!36\)\( p^{37} T^{3} + p^{74} T^{4} \)
43$D_{4}$ \( 1 + \)\(25\!\cdots\!00\)\( T + \)\(44\!\cdots\!50\)\( T^{2} + \)\(25\!\cdots\!00\)\( p^{37} T^{3} + p^{74} T^{4} \)
47$D_{4}$ \( 1 + \)\(42\!\cdots\!00\)\( T + \)\(14\!\cdots\!70\)\( T^{2} + \)\(42\!\cdots\!00\)\( p^{37} T^{3} + p^{74} T^{4} \)
53$D_{4}$ \( 1 + \)\(15\!\cdots\!00\)\( T + \)\(16\!\cdots\!70\)\( T^{2} + \)\(15\!\cdots\!00\)\( p^{37} T^{3} + p^{74} T^{4} \)
59$D_{4}$ \( 1 - \)\(23\!\cdots\!40\)\( T + \)\(64\!\cdots\!38\)\( T^{2} - \)\(23\!\cdots\!40\)\( p^{37} T^{3} + p^{74} T^{4} \)
61$D_{4}$ \( 1 - \)\(10\!\cdots\!44\)\( T + \)\(10\!\cdots\!26\)\( T^{2} - \)\(10\!\cdots\!44\)\( p^{37} T^{3} + p^{74} T^{4} \)
67$D_{4}$ \( 1 + \)\(10\!\cdots\!00\)\( T + \)\(94\!\cdots\!30\)\( T^{2} + \)\(10\!\cdots\!00\)\( p^{37} T^{3} + p^{74} T^{4} \)
71$D_{4}$ \( 1 - \)\(74\!\cdots\!16\)\( T + \)\(58\!\cdots\!46\)\( T^{2} - \)\(74\!\cdots\!16\)\( p^{37} T^{3} + p^{74} T^{4} \)
73$D_{4}$ \( 1 - \)\(19\!\cdots\!00\)\( T + \)\(18\!\cdots\!10\)\( T^{2} - \)\(19\!\cdots\!00\)\( p^{37} T^{3} + p^{74} T^{4} \)
79$D_{4}$ \( 1 - \)\(27\!\cdots\!80\)\( T + \)\(64\!\cdots\!42\)\( p T^{2} - \)\(27\!\cdots\!80\)\( p^{37} T^{3} + p^{74} T^{4} \)
83$D_{4}$ \( 1 - \)\(47\!\cdots\!00\)\( T + \)\(24\!\cdots\!30\)\( T^{2} - \)\(47\!\cdots\!00\)\( p^{37} T^{3} + p^{74} T^{4} \)
89$D_{4}$ \( 1 - \)\(13\!\cdots\!60\)\( T + \)\(23\!\cdots\!58\)\( T^{2} - \)\(13\!\cdots\!60\)\( p^{37} T^{3} + p^{74} T^{4} \)
97$D_{4}$ \( 1 - \)\(60\!\cdots\!00\)\( T + \)\(57\!\cdots\!70\)\( T^{2} - \)\(60\!\cdots\!00\)\( p^{37} T^{3} + p^{74} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.56982560306490774743633173202, −12.97924981677093867485116166361, −12.32977298346883012399583422873, −11.69793327349586923753835272384, −11.08638761826484467966094767741, −10.18487672862619229966687375147, −9.240843808415960017862893798652, −9.141835712938481320721142610050, −8.181767095037083665039383790276, −7.47818031133602201288462997171, −6.50631012254476021640822163523, −6.23557045964603883301190964202, −5.10942836408317068989441894151, −4.72121089856995631565104750498, −3.63356016971806899270931581536, −3.58817879819539040188777686579, −2.98838845480565957989625613917, −1.55118135216588969185328888964, −1.01378084956321360107102645348, −0.52000855062034144903580596604, 0.52000855062034144903580596604, 1.01378084956321360107102645348, 1.55118135216588969185328888964, 2.98838845480565957989625613917, 3.58817879819539040188777686579, 3.63356016971806899270931581536, 4.72121089856995631565104750498, 5.10942836408317068989441894151, 6.23557045964603883301190964202, 6.50631012254476021640822163523, 7.47818031133602201288462997171, 8.181767095037083665039383790276, 9.141835712938481320721142610050, 9.240843808415960017862893798652, 10.18487672862619229966687375147, 11.08638761826484467966094767741, 11.69793327349586923753835272384, 12.32977298346883012399583422873, 12.97924981677093867485116166361, 13.56982560306490774743633173202

Graph of the $Z$-function along the critical line