Properties

Label 2-3e2-9.7-c11-0-4
Degree $2$
Conductor $9$
Sign $0.962 + 0.270i$
Analytic cond. $6.91508$
Root an. cond. $2.62965$
Motivic weight $11$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−40.4 + 70.0i)2-s + (−411. + 88.6i)3-s + (−2.25e3 − 3.89e3i)4-s + (−156. − 271. i)5-s + (1.04e4 − 3.24e4i)6-s + (−4.08e4 + 7.07e4i)7-s + 1.98e5·8-s + (1.61e5 − 7.29e4i)9-s + 2.53e4·10-s + (1.63e5 − 2.83e5i)11-s + (1.27e6 + 1.40e6i)12-s + (−2.58e5 − 4.46e5i)13-s + (−3.30e6 − 5.72e6i)14-s + (8.84e4 + 9.76e4i)15-s + (−3.43e6 + 5.94e6i)16-s + 6.16e6·17-s + ⋯
L(s)  = 1  + (−0.894 + 1.54i)2-s + (−0.977 + 0.210i)3-s + (−1.09 − 1.90i)4-s + (−0.0223 − 0.0387i)5-s + (0.547 − 1.70i)6-s + (−0.918 + 1.59i)7-s + 2.14·8-s + (0.911 − 0.412i)9-s + 0.0801·10-s + (0.306 − 0.530i)11-s + (1.47 + 1.62i)12-s + (−0.192 − 0.333i)13-s + (−1.64 − 2.84i)14-s + (0.0300 + 0.0332i)15-s + (−0.818 + 1.41i)16-s + 1.05·17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.962 + 0.270i)\, \overline{\Lambda}(12-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9 ^{s/2} \, \Gamma_{\C}(s+11/2) \, L(s)\cr =\mathstrut & (0.962 + 0.270i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9\)    =    \(3^{2}\)
Sign: $0.962 + 0.270i$
Analytic conductor: \(6.91508\)
Root analytic conductor: \(2.62965\)
Motivic weight: \(11\)
Rational: no
Arithmetic: yes
Character: $\chi_{9} (7, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 9,\ (\ :11/2),\ 0.962 + 0.270i)\)

Particular Values

\(L(6)\) \(\approx\) \(0.180765 - 0.0248718i\)
\(L(\frac12)\) \(\approx\) \(0.180765 - 0.0248718i\)
\(L(\frac{13}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (411. - 88.6i)T \)
good2 \( 1 + (40.4 - 70.0i)T + (-1.02e3 - 1.77e3i)T^{2} \)
5 \( 1 + (156. + 271. i)T + (-2.44e7 + 4.22e7i)T^{2} \)
7 \( 1 + (4.08e4 - 7.07e4i)T + (-9.88e8 - 1.71e9i)T^{2} \)
11 \( 1 + (-1.63e5 + 2.83e5i)T + (-1.42e11 - 2.47e11i)T^{2} \)
13 \( 1 + (2.58e5 + 4.46e5i)T + (-8.96e11 + 1.55e12i)T^{2} \)
17 \( 1 - 6.16e6T + 3.42e13T^{2} \)
19 \( 1 + 9.85e6T + 1.16e14T^{2} \)
23 \( 1 + (1.51e7 + 2.62e7i)T + (-4.76e14 + 8.25e14i)T^{2} \)
29 \( 1 + (1.70e7 - 2.95e7i)T + (-6.10e15 - 1.05e16i)T^{2} \)
31 \( 1 + (3.19e7 + 5.53e7i)T + (-1.27e16 + 2.20e16i)T^{2} \)
37 \( 1 + 3.37e8T + 1.77e17T^{2} \)
41 \( 1 + (1.73e8 + 3.00e8i)T + (-2.75e17 + 4.76e17i)T^{2} \)
43 \( 1 + (4.07e8 - 7.06e8i)T + (-4.64e17 - 8.04e17i)T^{2} \)
47 \( 1 + (-5.62e8 + 9.74e8i)T + (-1.23e18 - 2.14e18i)T^{2} \)
53 \( 1 - 4.18e9T + 9.26e18T^{2} \)
59 \( 1 + (2.15e9 + 3.73e9i)T + (-1.50e19 + 2.61e19i)T^{2} \)
61 \( 1 + (-1.80e9 + 3.13e9i)T + (-2.17e19 - 3.76e19i)T^{2} \)
67 \( 1 + (-1.29e9 - 2.24e9i)T + (-6.10e19 + 1.05e20i)T^{2} \)
71 \( 1 - 1.08e10T + 2.31e20T^{2} \)
73 \( 1 + 2.52e10T + 3.13e20T^{2} \)
79 \( 1 + (-4.75e9 + 8.23e9i)T + (-3.73e20 - 6.47e20i)T^{2} \)
83 \( 1 + (-2.27e9 + 3.94e9i)T + (-6.43e20 - 1.11e21i)T^{2} \)
89 \( 1 + 7.34e10T + 2.77e21T^{2} \)
97 \( 1 + (-4.91e10 + 8.51e10i)T + (-3.57e21 - 6.19e21i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−18.26924969556163589759050634173, −16.79770125593276377589323773983, −15.98847006663611527025059277208, −14.87749182592661770878832678666, −12.36075277457677847206068562961, −10.05434287801613204006855138304, −8.655357716696892294086846892553, −6.49130920746944859395735582326, −5.52691325230370914064089274124, −0.17273292553401746852148677369, 1.26123273963838522467384278304, 3.88313301668994622194959319066, 7.23336388105815332831154956273, 9.795827095259272069051947527105, 10.68264279203479809808758952530, 12.13219921647435544424481198107, 13.31159418815981977603965220489, 16.68015246291659833014478800946, 17.36028279003058140991351343246, 18.88831434867757300497645589845

Graph of the $Z$-function along the critical line