Properties

Label 6-8820e3-1.1-c1e3-0-0
Degree $6$
Conductor $686128968000$
Sign $1$
Analytic cond. $349330.$
Root an. cond. $8.39214$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·5-s − 2·11-s − 5·13-s + 2·17-s + 19-s + 6·23-s + 6·25-s + 12·29-s − 3·31-s − 9·37-s − 10·41-s − 43-s − 10·47-s + 4·53-s + 6·55-s + 16·59-s + 2·61-s + 15·65-s − 5·67-s + 20·71-s − 15·73-s − 13·79-s + 2·83-s − 6·85-s − 2·89-s − 3·95-s − 12·97-s + ⋯
L(s)  = 1  − 1.34·5-s − 0.603·11-s − 1.38·13-s + 0.485·17-s + 0.229·19-s + 1.25·23-s + 6/5·25-s + 2.22·29-s − 0.538·31-s − 1.47·37-s − 1.56·41-s − 0.152·43-s − 1.45·47-s + 0.549·53-s + 0.809·55-s + 2.08·59-s + 0.256·61-s + 1.86·65-s − 0.610·67-s + 2.37·71-s − 1.75·73-s − 1.46·79-s + 0.219·83-s − 0.650·85-s − 0.211·89-s − 0.307·95-s − 1.21·97-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{6} \cdot 3^{6} \cdot 5^{3} \cdot 7^{6}\right)^{s/2} \, \Gamma_{\C}(s)^{3} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{6} \cdot 3^{6} \cdot 5^{3} \cdot 7^{6}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{3} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(6\)
Conductor: \(2^{6} \cdot 3^{6} \cdot 5^{3} \cdot 7^{6}\)
Sign: $1$
Analytic conductor: \(349330.\)
Root analytic conductor: \(8.39214\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((6,\ 2^{6} \cdot 3^{6} \cdot 5^{3} \cdot 7^{6} ,\ ( \ : 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(2.564684790\)
\(L(\frac12)\) \(\approx\) \(2.564684790\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5$C_1$ \( ( 1 + T )^{3} \)
7 \( 1 \)
good11$S_4\times C_2$ \( 1 + 2 T + 15 T^{2} + 62 T^{3} + 15 p T^{4} + 2 p^{2} T^{5} + p^{3} T^{6} \)
13$S_4\times C_2$ \( 1 + 5 T + 28 T^{2} + 133 T^{3} + 28 p T^{4} + 5 p^{2} T^{5} + p^{3} T^{6} \)
17$S_4\times C_2$ \( 1 - 2 T + 27 T^{2} - 86 T^{3} + 27 p T^{4} - 2 p^{2} T^{5} + p^{3} T^{6} \)
19$S_4\times C_2$ \( 1 - T + 40 T^{2} - 17 T^{3} + 40 p T^{4} - p^{2} T^{5} + p^{3} T^{6} \)
23$S_4\times C_2$ \( 1 - 6 T + 33 T^{2} - 114 T^{3} + 33 p T^{4} - 6 p^{2} T^{5} + p^{3} T^{6} \)
29$S_4\times C_2$ \( 1 - 12 T + 69 T^{2} - 318 T^{3} + 69 p T^{4} - 12 p^{2} T^{5} + p^{3} T^{6} \)
31$C_2$ \( ( 1 + T + p T^{2} )^{3} \)
37$S_4\times C_2$ \( 1 + 9 T + 90 T^{2} + 475 T^{3} + 90 p T^{4} + 9 p^{2} T^{5} + p^{3} T^{6} \)
41$S_4\times C_2$ \( 1 + 10 T + 45 T^{2} + 46 T^{3} + 45 p T^{4} + 10 p^{2} T^{5} + p^{3} T^{6} \)
43$S_4\times C_2$ \( 1 + T + 104 T^{2} + p T^{3} + 104 p T^{4} + p^{2} T^{5} + p^{3} T^{6} \)
47$S_4\times C_2$ \( 1 + 10 T + 105 T^{2} + 868 T^{3} + 105 p T^{4} + 10 p^{2} T^{5} + p^{3} T^{6} \)
53$S_4\times C_2$ \( 1 - 4 T + 63 T^{2} - 568 T^{3} + 63 p T^{4} - 4 p^{2} T^{5} + p^{3} T^{6} \)
59$S_4\times C_2$ \( 1 - 16 T + 243 T^{2} - 1906 T^{3} + 243 p T^{4} - 16 p^{2} T^{5} + p^{3} T^{6} \)
61$S_4\times C_2$ \( 1 - 2 T + 167 T^{2} - 248 T^{3} + 167 p T^{4} - 2 p^{2} T^{5} + p^{3} T^{6} \)
67$S_4\times C_2$ \( 1 + 5 T + 190 T^{2} + 673 T^{3} + 190 p T^{4} + 5 p^{2} T^{5} + p^{3} T^{6} \)
71$S_4\times C_2$ \( 1 - 20 T + 327 T^{2} - 3038 T^{3} + 327 p T^{4} - 20 p^{2} T^{5} + p^{3} T^{6} \)
73$S_4\times C_2$ \( 1 + 15 T + 246 T^{2} + 2149 T^{3} + 246 p T^{4} + 15 p^{2} T^{5} + p^{3} T^{6} \)
79$S_4\times C_2$ \( 1 + 13 T + 128 T^{2} + 601 T^{3} + 128 p T^{4} + 13 p^{2} T^{5} + p^{3} T^{6} \)
83$S_4\times C_2$ \( 1 - 2 T + 93 T^{2} - 854 T^{3} + 93 p T^{4} - 2 p^{2} T^{5} + p^{3} T^{6} \)
89$S_4\times C_2$ \( 1 + 2 T + 93 T^{2} + 230 T^{3} + 93 p T^{4} + 2 p^{2} T^{5} + p^{3} T^{6} \)
97$D_{6}$ \( 1 + 12 T + 267 T^{2} + 2212 T^{3} + 267 p T^{4} + 12 p^{2} T^{5} + p^{3} T^{6} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{6} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.94348249264826125528501009759, −6.77088584990498875978858640366, −6.44979565394900555905164345144, −6.33034246355333686056304392217, −5.92938374244420199883254682641, −5.45232945774816732373569672081, −5.27992991243703387087997354217, −5.23579605656082713731081416080, −5.08838194564283236594058058263, −4.74262400489857696547608803200, −4.49464208910651960342705194981, −4.28208416392592566966779702753, −4.04457300681858860027579097998, −3.56563087332397534574548657431, −3.54190713587186295648452430324, −3.18508122873793967674685589087, −2.79337380892110283048586667652, −2.79190048783959710160481967504, −2.65726954848364897683588097619, −1.88293442085013186933000536540, −1.72411042689630298921012040838, −1.60054286370532414661996942528, −0.74147864684393060115654034015, −0.64907726058610763378633131848, −0.38217644204947088472056642918, 0.38217644204947088472056642918, 0.64907726058610763378633131848, 0.74147864684393060115654034015, 1.60054286370532414661996942528, 1.72411042689630298921012040838, 1.88293442085013186933000536540, 2.65726954848364897683588097619, 2.79190048783959710160481967504, 2.79337380892110283048586667652, 3.18508122873793967674685589087, 3.54190713587186295648452430324, 3.56563087332397534574548657431, 4.04457300681858860027579097998, 4.28208416392592566966779702753, 4.49464208910651960342705194981, 4.74262400489857696547608803200, 5.08838194564283236594058058263, 5.23579605656082713731081416080, 5.27992991243703387087997354217, 5.45232945774816732373569672081, 5.92938374244420199883254682641, 6.33034246355333686056304392217, 6.44979565394900555905164345144, 6.77088584990498875978858640366, 6.94348249264826125528501009759

Graph of the $Z$-function along the critical line