Properties

Label 4-882e2-1.1-c3e2-0-35
Degree $4$
Conductor $777924$
Sign $1$
Analytic cond. $2708.12$
Root an. cond. $7.21385$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·2-s + 12·4-s − 12·5-s − 32·8-s + 48·10-s − 4·11-s + 48·13-s + 80·16-s − 132·17-s + 120·19-s − 144·20-s + 16·22-s + 76·23-s − 140·25-s − 192·26-s + 112·29-s + 432·31-s − 192·32-s + 528·34-s − 280·37-s − 480·38-s + 384·40-s − 36·41-s − 128·43-s − 48·44-s − 304·46-s + 264·47-s + ⋯
L(s)  = 1  − 1.41·2-s + 3/2·4-s − 1.07·5-s − 1.41·8-s + 1.51·10-s − 0.109·11-s + 1.02·13-s + 5/4·16-s − 1.88·17-s + 1.44·19-s − 1.60·20-s + 0.155·22-s + 0.689·23-s − 1.11·25-s − 1.44·26-s + 0.717·29-s + 2.50·31-s − 1.06·32-s + 2.66·34-s − 1.24·37-s − 2.04·38-s + 1.51·40-s − 0.137·41-s − 0.453·43-s − 0.164·44-s − 0.974·46-s + 0.819·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 777924 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 777924 ^{s/2} \, \Gamma_{\C}(s+3/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(777924\)    =    \(2^{2} \cdot 3^{4} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(2708.12\)
Root analytic conductor: \(7.21385\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 777924,\ (\ :3/2, 3/2),\ 1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( ( 1 + p T )^{2} \)
3 \( 1 \)
7 \( 1 \)
good5$D_{4}$ \( 1 + 12 T + 284 T^{2} + 12 p^{3} T^{3} + p^{6} T^{4} \)
11$D_{4}$ \( 1 + 4 T + 2594 T^{2} + 4 p^{3} T^{3} + p^{6} T^{4} \)
13$D_{4}$ \( 1 - 48 T + 4520 T^{2} - 48 p^{3} T^{3} + p^{6} T^{4} \)
17$D_{4}$ \( 1 + 132 T + 820 p T^{2} + 132 p^{3} T^{3} + p^{6} T^{4} \)
19$D_{4}$ \( 1 - 120 T + 13086 T^{2} - 120 p^{3} T^{3} + p^{6} T^{4} \)
23$D_{4}$ \( 1 - 76 T + 4970 T^{2} - 76 p^{3} T^{3} + p^{6} T^{4} \)
29$D_{4}$ \( 1 - 112 T + 6914 T^{2} - 112 p^{3} T^{3} + p^{6} T^{4} \)
31$D_{4}$ \( 1 - 432 T + 100406 T^{2} - 432 p^{3} T^{3} + p^{6} T^{4} \)
37$D_{4}$ \( 1 + 280 T + 56106 T^{2} + 280 p^{3} T^{3} + p^{6} T^{4} \)
41$D_{4}$ \( 1 + 36 T + 105908 T^{2} + 36 p^{3} T^{3} + p^{6} T^{4} \)
43$D_{4}$ \( 1 + 128 T - 2778 T^{2} + 128 p^{3} T^{3} + p^{6} T^{4} \)
47$D_{4}$ \( 1 - 264 T - 3418 T^{2} - 264 p^{3} T^{3} + p^{6} T^{4} \)
53$D_{4}$ \( 1 + 268 T + 241982 T^{2} + 268 p^{3} T^{3} + p^{6} T^{4} \)
59$D_{4}$ \( 1 + 336 T + 261374 T^{2} + 336 p^{3} T^{3} + p^{6} T^{4} \)
61$D_{4}$ \( 1 + 504 T + 268248 T^{2} + 504 p^{3} T^{3} + p^{6} T^{4} \)
67$D_{4}$ \( 1 + 384 T + 596918 T^{2} + 384 p^{3} T^{3} + p^{6} T^{4} \)
71$D_{4}$ \( 1 - 396 T + 521098 T^{2} - 396 p^{3} T^{3} + p^{6} T^{4} \)
73$D_{4}$ \( 1 + 312 T + 94320 T^{2} + 312 p^{3} T^{3} + p^{6} T^{4} \)
79$D_{4}$ \( 1 + 848 T + 985854 T^{2} + 848 p^{3} T^{3} + p^{6} T^{4} \)
83$D_{4}$ \( 1 - 648 T + 1235750 T^{2} - 648 p^{3} T^{3} + p^{6} T^{4} \)
89$D_{4}$ \( 1 - 612 T + 1442324 T^{2} - 612 p^{3} T^{3} + p^{6} T^{4} \)
97$D_{4}$ \( 1 + 2184 T + 2982432 T^{2} + 2184 p^{3} T^{3} + p^{6} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.329378591428063918216598753755, −9.155660751676870838734898390465, −8.649401809578329842333574905679, −8.241555674483904794557519650669, −8.078007338646603122008562390389, −7.43968822219664070941235706518, −7.23561181822408275497593318828, −6.59907955931469152228777125575, −6.28641875749041656283365060356, −5.90801905790919284798576446434, −4.92393863039880438068452496732, −4.77515703539850638916203129980, −3.80484858623199286895703159076, −3.68945485053633272072374993435, −2.68632041969242410553035852191, −2.58551049044513897269674910585, −1.31475468555024002577038910468, −1.25251076799397200600005695343, 0, 0, 1.25251076799397200600005695343, 1.31475468555024002577038910468, 2.58551049044513897269674910585, 2.68632041969242410553035852191, 3.68945485053633272072374993435, 3.80484858623199286895703159076, 4.77515703539850638916203129980, 4.92393863039880438068452496732, 5.90801905790919284798576446434, 6.28641875749041656283365060356, 6.59907955931469152228777125575, 7.23561181822408275497593318828, 7.43968822219664070941235706518, 8.078007338646603122008562390389, 8.241555674483904794557519650669, 8.649401809578329842333574905679, 9.155660751676870838734898390465, 9.329378591428063918216598753755

Graph of the $Z$-function along the critical line