Properties

Degree 2
Conductor $ 2 \cdot 3^{2} \cdot 7^{2} $
Sign $-0.386 - 0.922i$
Motivic weight 1
Primitive yes
Self-dual no
Analytic rank 0

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.5 + 0.866i)2-s + (−0.499 − 0.866i)4-s + 0.999·8-s − 4·13-s + (−0.5 + 0.866i)16-s + (3 + 5.19i)17-s + (−1 + 1.73i)19-s + (2.5 + 4.33i)25-s + (2 − 3.46i)26-s + 6·29-s + (2 + 3.46i)31-s + (−0.499 − 0.866i)32-s − 6·34-s + (−1 + 1.73i)37-s + (−0.999 − 1.73i)38-s + ⋯
L(s)  = 1  + (−0.353 + 0.612i)2-s + (−0.249 − 0.433i)4-s + 0.353·8-s − 1.10·13-s + (−0.125 + 0.216i)16-s + (0.727 + 1.26i)17-s + (−0.229 + 0.397i)19-s + (0.5 + 0.866i)25-s + (0.392 − 0.679i)26-s + 1.11·29-s + (0.359 + 0.622i)31-s + (−0.0883 − 0.153i)32-s − 1.02·34-s + (−0.164 + 0.284i)37-s + (−0.162 − 0.280i)38-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 882 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.386 - 0.922i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 882 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.386 - 0.922i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(882\)    =    \(2 \cdot 3^{2} \cdot 7^{2}\)
\( \varepsilon \)  =  $-0.386 - 0.922i$
motivic weight  =  \(1\)
character  :  $\chi_{882} (667, \cdot )$
primitive  :  yes
self-dual  :  no
analytic rank  =  0
Selberg data  =  $(2,\ 882,\ (\ :1/2),\ -0.386 - 0.922i)$
$L(1)$  $\approx$  $0.554939 + 0.834266i$
$L(\frac12)$  $\approx$  $0.554939 + 0.834266i$
$L(\frac{3}{2})$   not available
$L(1)$   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \]where, for $p \notin \{2,\;3,\;7\}$,\(F_p(T)\) is a polynomial of degree 2. If $p \in \{2,\;3,\;7\}$, then $F_p(T)$ is a polynomial of degree at most 1.
$p$$F_p(T)$
bad2 \( 1 + (0.5 - 0.866i)T \)
3 \( 1 \)
7 \( 1 \)
good5 \( 1 + (-2.5 - 4.33i)T^{2} \)
11 \( 1 + (-5.5 + 9.52i)T^{2} \)
13 \( 1 + 4T + 13T^{2} \)
17 \( 1 + (-3 - 5.19i)T + (-8.5 + 14.7i)T^{2} \)
19 \( 1 + (1 - 1.73i)T + (-9.5 - 16.4i)T^{2} \)
23 \( 1 + (-11.5 - 19.9i)T^{2} \)
29 \( 1 - 6T + 29T^{2} \)
31 \( 1 + (-2 - 3.46i)T + (-15.5 + 26.8i)T^{2} \)
37 \( 1 + (1 - 1.73i)T + (-18.5 - 32.0i)T^{2} \)
41 \( 1 + 6T + 41T^{2} \)
43 \( 1 - 8T + 43T^{2} \)
47 \( 1 + (6 - 10.3i)T + (-23.5 - 40.7i)T^{2} \)
53 \( 1 + (-3 - 5.19i)T + (-26.5 + 45.8i)T^{2} \)
59 \( 1 + (3 + 5.19i)T + (-29.5 + 51.0i)T^{2} \)
61 \( 1 + (4 - 6.92i)T + (-30.5 - 52.8i)T^{2} \)
67 \( 1 + (-2 - 3.46i)T + (-33.5 + 58.0i)T^{2} \)
71 \( 1 + 71T^{2} \)
73 \( 1 + (1 + 1.73i)T + (-36.5 + 63.2i)T^{2} \)
79 \( 1 + (4 - 6.92i)T + (-39.5 - 68.4i)T^{2} \)
83 \( 1 - 6T + 83T^{2} \)
89 \( 1 + (3 - 5.19i)T + (-44.5 - 77.0i)T^{2} \)
97 \( 1 + 10T + 97T^{2} \)
show more
show less
\[\begin{aligned}L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\end{aligned}\]

Imaginary part of the first few zeros on the critical line

−10.24050168938634619756520511423, −9.562839283642452873150273824419, −8.579070835181114491590579675972, −7.893845413274031277357094778620, −7.04484775800697037631545065049, −6.16705628437093657687964839083, −5.25382606869139825437544321754, −4.30707667531637213604764354311, −2.96914043439670374576015188211, −1.41601001243632920313198798025, 0.57480985419816511141810679089, 2.27167569372610041124362855296, 3.13792778408072637693602168647, 4.48973455666388034502967389192, 5.22717740194178482115636502177, 6.61190330864623345980003208225, 7.43214040408875706848220213907, 8.290591895518752341408238230342, 9.202208327398030096372454610694, 9.947962399167162574763516562225

Graph of the $Z$-function along the critical line