Properties

Label 12-882e6-1.1-c1e6-0-10
Degree $12$
Conductor $4.708\times 10^{17}$
Sign $1$
Analytic cond. $122032.$
Root an. cond. $2.65382$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 6·2-s + 2·3-s + 21·4-s + 5·5-s + 12·6-s + 56·8-s + 30·10-s − 11-s + 42·12-s + 2·13-s + 10·15-s + 126·16-s + 4·17-s + 3·19-s + 105·20-s − 6·22-s − 7·23-s + 112·24-s + 19·25-s + 12·26-s − 5·27-s − 5·29-s + 60·30-s − 28·31-s + 252·32-s − 2·33-s + 24·34-s + ⋯
L(s)  = 1  + 4.24·2-s + 1.15·3-s + 21/2·4-s + 2.23·5-s + 4.89·6-s + 19.7·8-s + 9.48·10-s − 0.301·11-s + 12.1·12-s + 0.554·13-s + 2.58·15-s + 63/2·16-s + 0.970·17-s + 0.688·19-s + 23.4·20-s − 1.27·22-s − 1.45·23-s + 22.8·24-s + 19/5·25-s + 2.35·26-s − 0.962·27-s − 0.928·29-s + 10.9·30-s − 5.02·31-s + 44.5·32-s − 0.348·33-s + 4.11·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{6} \cdot 3^{12} \cdot 7^{12}\right)^{s/2} \, \Gamma_{\C}(s)^{6} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{6} \cdot 3^{12} \cdot 7^{12}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{6} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(12\)
Conductor: \(2^{6} \cdot 3^{12} \cdot 7^{12}\)
Sign: $1$
Analytic conductor: \(122032.\)
Root analytic conductor: \(2.65382\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((12,\ 2^{6} \cdot 3^{12} \cdot 7^{12} ,\ ( \ : [1/2]^{6} ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(309.6930187\)
\(L(\frac12)\) \(\approx\) \(309.6930187\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( ( 1 - T )^{6} \)
3 \( 1 - 2 T + 4 T^{2} - p T^{3} + 4 p T^{4} - 2 p^{2} T^{5} + p^{3} T^{6} \)
7 \( 1 \)
good5 \( 1 - p T + 6 T^{2} - T^{3} + 31 T^{4} - 68 T^{5} + 29 T^{6} - 68 p T^{7} + 31 p^{2} T^{8} - p^{3} T^{9} + 6 p^{4} T^{10} - p^{6} T^{11} + p^{6} T^{12} \)
11 \( 1 + T - 6 T^{2} - 103 T^{3} - 83 T^{4} + 32 p T^{5} + 457 p T^{6} + 32 p^{2} T^{7} - 83 p^{2} T^{8} - 103 p^{3} T^{9} - 6 p^{4} T^{10} + p^{5} T^{11} + p^{6} T^{12} \)
13 \( 1 - 2 T - 32 T^{2} + 2 p T^{3} + 730 T^{4} - 230 T^{5} - 10729 T^{6} - 230 p T^{7} + 730 p^{2} T^{8} + 2 p^{4} T^{9} - 32 p^{4} T^{10} - 2 p^{5} T^{11} + p^{6} T^{12} \)
17 \( 1 - 4 T + 9 T^{2} - 92 T^{3} + 58 T^{4} + 20 T^{5} + 5393 T^{6} + 20 p T^{7} + 58 p^{2} T^{8} - 92 p^{3} T^{9} + 9 p^{4} T^{10} - 4 p^{5} T^{11} + p^{6} T^{12} \)
19 \( 1 - 3 T - 42 T^{2} + 61 T^{3} + 69 p T^{4} - 726 T^{5} - 27501 T^{6} - 726 p T^{7} + 69 p^{3} T^{8} + 61 p^{3} T^{9} - 42 p^{4} T^{10} - 3 p^{5} T^{11} + p^{6} T^{12} \)
23 \( 1 + 7 T - 24 T^{2} - 127 T^{3} + 1417 T^{4} + 3484 T^{5} - 22393 T^{6} + 3484 p T^{7} + 1417 p^{2} T^{8} - 127 p^{3} T^{9} - 24 p^{4} T^{10} + 7 p^{5} T^{11} + p^{6} T^{12} \)
29 \( 1 + 5 T - 30 T^{2} - 371 T^{3} - 185 T^{4} + 6020 T^{5} + 44357 T^{6} + 6020 p T^{7} - 185 p^{2} T^{8} - 371 p^{3} T^{9} - 30 p^{4} T^{10} + 5 p^{5} T^{11} + p^{6} T^{12} \)
31 \( ( 1 + 14 T + 138 T^{2} + 841 T^{3} + 138 p T^{4} + 14 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
37 \( 1 + 9 T - 21 T^{2} - 268 T^{3} + 1293 T^{4} + 4875 T^{5} - 42882 T^{6} + 4875 p T^{7} + 1293 p^{2} T^{8} - 268 p^{3} T^{9} - 21 p^{4} T^{10} + 9 p^{5} T^{11} + p^{6} T^{12} \)
41 \( 1 - 12 T - 18 T^{2} + 78 T^{3} + 7470 T^{4} - 24546 T^{5} - 158105 T^{6} - 24546 p T^{7} + 7470 p^{2} T^{8} + 78 p^{3} T^{9} - 18 p^{4} T^{10} - 12 p^{5} T^{11} + p^{6} T^{12} \)
43 \( 1 - 18 T + 114 T^{2} - 682 T^{3} + 7188 T^{4} - 33492 T^{5} + 63039 T^{6} - 33492 p T^{7} + 7188 p^{2} T^{8} - 682 p^{3} T^{9} + 114 p^{4} T^{10} - 18 p^{5} T^{11} + p^{6} T^{12} \)
47 \( ( 1 - 3 T + 117 T^{2} - 309 T^{3} + 117 p T^{4} - 3 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
53 \( 1 - 9 T - 36 T^{2} + 873 T^{3} - 1179 T^{4} - 26334 T^{5} + 272077 T^{6} - 26334 p T^{7} - 1179 p^{2} T^{8} + 873 p^{3} T^{9} - 36 p^{4} T^{10} - 9 p^{5} T^{11} + p^{6} T^{12} \)
59 \( ( 1 - 4 T + 76 T^{2} - 11 p T^{3} + 76 p T^{4} - 4 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
61 \( ( 1 - 4 T + 48 T^{2} + 229 T^{3} + 48 p T^{4} - 4 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
67 \( ( 1 + 5 T + 143 T^{2} + 521 T^{3} + 143 p T^{4} + 5 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
71 \( ( 1 - 7 T + 163 T^{2} - 895 T^{3} + 163 p T^{4} - 7 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
73 \( 1 - 25 T + 254 T^{2} - 2073 T^{3} + 20533 T^{4} - 115046 T^{5} + 366817 T^{6} - 115046 p T^{7} + 20533 p^{2} T^{8} - 2073 p^{3} T^{9} + 254 p^{4} T^{10} - 25 p^{5} T^{11} + p^{6} T^{12} \)
79 \( ( 1 + 7 T + 93 T^{2} + 335 T^{3} + 93 p T^{4} + 7 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
83 \( 1 + 8 T - 180 T^{2} - 518 T^{3} + 29404 T^{4} + 32420 T^{5} - 2713585 T^{6} + 32420 p T^{7} + 29404 p^{2} T^{8} - 518 p^{3} T^{9} - 180 p^{4} T^{10} + 8 p^{5} T^{11} + p^{6} T^{12} \)
89 \( 1 - 9 T - 180 T^{2} + 729 T^{3} + 31041 T^{4} - 54846 T^{5} - 2925911 T^{6} - 54846 p T^{7} + 31041 p^{2} T^{8} + 729 p^{3} T^{9} - 180 p^{4} T^{10} - 9 p^{5} T^{11} + p^{6} T^{12} \)
97 \( 1 - 28 T + 257 T^{2} - 2820 T^{3} + 59506 T^{4} - 545924 T^{5} + 3126001 T^{6} - 545924 p T^{7} + 59506 p^{2} T^{8} - 2820 p^{3} T^{9} + 257 p^{4} T^{10} - 28 p^{5} T^{11} + p^{6} T^{12} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{12} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−5.38660549627724443870281180386, −5.20346815821490426441133462994, −5.03922968959462725859677697559, −4.98480657840510896700648108856, −4.95202955347976967526488487505, −4.47947976203693375101802488878, −4.45180019230747696336840394397, −4.01441416701342527771533067883, −3.88180584707747805727726127936, −3.75501616035043568760021663945, −3.72909827471730383056553610053, −3.72293680967607632182675396621, −3.44227277827195254698182346731, −3.25121662754061761143184710111, −2.90075641032200970439542504628, −2.79002220357769867237199400985, −2.57626016281420032575854290572, −2.44963856252024394578094356408, −2.23121504244505386077599444888, −2.05594291034276303357457543887, −1.94817564186898861970560172981, −1.73120059155706083279424728582, −1.49937566032210452523044359072, −1.06912918661478428773034365664, −0.76624280172878468688619331844, 0.76624280172878468688619331844, 1.06912918661478428773034365664, 1.49937566032210452523044359072, 1.73120059155706083279424728582, 1.94817564186898861970560172981, 2.05594291034276303357457543887, 2.23121504244505386077599444888, 2.44963856252024394578094356408, 2.57626016281420032575854290572, 2.79002220357769867237199400985, 2.90075641032200970439542504628, 3.25121662754061761143184710111, 3.44227277827195254698182346731, 3.72293680967607632182675396621, 3.72909827471730383056553610053, 3.75501616035043568760021663945, 3.88180584707747805727726127936, 4.01441416701342527771533067883, 4.45180019230747696336840394397, 4.47947976203693375101802488878, 4.95202955347976967526488487505, 4.98480657840510896700648108856, 5.03922968959462725859677697559, 5.20346815821490426441133462994, 5.38660549627724443870281180386

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.