| L(s) = 1 | + 3.38·3-s − 1.60·5-s + 8.42·9-s − 11-s − 4.98·13-s − 5.42·15-s − 1.77·17-s − 6.76·19-s + 1.42·23-s − 2.42·25-s + 18.3·27-s − 6·29-s + 3.38·31-s − 3.38·33-s − 5.42·37-s − 16.8·39-s + 8.19·41-s + 8.84·43-s − 13.5·45-s − 1.77·47-s − 6·51-s − 10.8·53-s + 1.60·55-s − 22.8·57-s − 0.170·59-s + 11.7·61-s + 8.00·65-s + ⋯ |
| L(s) = 1 | + 1.95·3-s − 0.717·5-s + 2.80·9-s − 0.301·11-s − 1.38·13-s − 1.40·15-s − 0.430·17-s − 1.55·19-s + 0.297·23-s − 0.484·25-s + 3.52·27-s − 1.11·29-s + 0.607·31-s − 0.588·33-s − 0.891·37-s − 2.69·39-s + 1.27·41-s + 1.34·43-s − 2.01·45-s − 0.258·47-s − 0.840·51-s − 1.49·53-s + 0.216·55-s − 3.02·57-s − 0.0221·59-s + 1.50·61-s + 0.992·65-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 8624 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8624 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(=\) |
\(0\) |
| \(L(\frac12)\) |
\(=\) |
\(0\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 7 | \( 1 \) |
| 11 | \( 1 + T \) |
| good | 3 | \( 1 - 3.38T + 3T^{2} \) |
| 5 | \( 1 + 1.60T + 5T^{2} \) |
| 13 | \( 1 + 4.98T + 13T^{2} \) |
| 17 | \( 1 + 1.77T + 17T^{2} \) |
| 19 | \( 1 + 6.76T + 19T^{2} \) |
| 23 | \( 1 - 1.42T + 23T^{2} \) |
| 29 | \( 1 + 6T + 29T^{2} \) |
| 31 | \( 1 - 3.38T + 31T^{2} \) |
| 37 | \( 1 + 5.42T + 37T^{2} \) |
| 41 | \( 1 - 8.19T + 41T^{2} \) |
| 43 | \( 1 - 8.84T + 43T^{2} \) |
| 47 | \( 1 + 1.77T + 47T^{2} \) |
| 53 | \( 1 + 10.8T + 53T^{2} \) |
| 59 | \( 1 + 0.170T + 59T^{2} \) |
| 61 | \( 1 - 11.7T + 61T^{2} \) |
| 67 | \( 1 + 13.4T + 67T^{2} \) |
| 71 | \( 1 + 5.42T + 71T^{2} \) |
| 73 | \( 1 + 5.32T + 73T^{2} \) |
| 79 | \( 1 + 6T + 79T^{2} \) |
| 83 | \( 1 - 3.55T + 83T^{2} \) |
| 89 | \( 1 + 11.9T + 89T^{2} \) |
| 97 | \( 1 - 8.36T + 97T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.53029826562886174578273213853, −7.18735515514758527039278411503, −6.29398848680554379225823560598, −5.04300810323386071454852238027, −4.20828958591348249836933222092, −3.98218197730488148883210237544, −2.87040563816291888453838735656, −2.45518887668358796408187858139, −1.63375003262579083175101365065, 0,
1.63375003262579083175101365065, 2.45518887668358796408187858139, 2.87040563816291888453838735656, 3.98218197730488148883210237544, 4.20828958591348249836933222092, 5.04300810323386071454852238027, 6.29398848680554379225823560598, 7.18735515514758527039278411503, 7.53029826562886174578273213853