Properties

Label 2-8624-1.1-c1-0-202
Degree $2$
Conductor $8624$
Sign $-1$
Analytic cond. $68.8629$
Root an. cond. $8.29837$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.25·3-s + 3.52·5-s − 1.42·9-s − 11-s + 2.26·13-s + 4.42·15-s − 4.78·17-s − 2.51·19-s − 8.42·23-s + 7.42·25-s − 5.55·27-s − 6·29-s + 1.25·31-s − 1.25·33-s + 4.42·37-s + 2.84·39-s − 9.31·41-s − 10.8·43-s − 5.02·45-s − 4.78·47-s − 5.99·51-s + 8.84·53-s − 3.52·55-s − 3.15·57-s − 8.30·59-s + 0.240·61-s + 8·65-s + ⋯
L(s)  = 1  + 0.724·3-s + 1.57·5-s − 0.474·9-s − 0.301·11-s + 0.629·13-s + 1.14·15-s − 1.15·17-s − 0.575·19-s − 1.75·23-s + 1.48·25-s − 1.06·27-s − 1.11·29-s + 0.225·31-s − 0.218·33-s + 0.727·37-s + 0.456·39-s − 1.45·41-s − 1.65·43-s − 0.748·45-s − 0.697·47-s − 0.840·51-s + 1.21·53-s − 0.475·55-s − 0.417·57-s − 1.08·59-s + 0.0308·61-s + 0.992·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8624 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8624 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8624\)    =    \(2^{4} \cdot 7^{2} \cdot 11\)
Sign: $-1$
Analytic conductor: \(68.8629\)
Root analytic conductor: \(8.29837\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 8624,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 \)
11 \( 1 + T \)
good3 \( 1 - 1.25T + 3T^{2} \)
5 \( 1 - 3.52T + 5T^{2} \)
13 \( 1 - 2.26T + 13T^{2} \)
17 \( 1 + 4.78T + 17T^{2} \)
19 \( 1 + 2.51T + 19T^{2} \)
23 \( 1 + 8.42T + 23T^{2} \)
29 \( 1 + 6T + 29T^{2} \)
31 \( 1 - 1.25T + 31T^{2} \)
37 \( 1 - 4.42T + 37T^{2} \)
41 \( 1 + 9.31T + 41T^{2} \)
43 \( 1 + 10.8T + 43T^{2} \)
47 \( 1 + 4.78T + 47T^{2} \)
53 \( 1 - 8.84T + 53T^{2} \)
59 \( 1 + 8.30T + 59T^{2} \)
61 \( 1 - 0.240T + 61T^{2} \)
67 \( 1 + 3.57T + 67T^{2} \)
71 \( 1 - 4.42T + 71T^{2} \)
73 \( 1 + 14.3T + 73T^{2} \)
79 \( 1 + 6T + 79T^{2} \)
83 \( 1 - 9.56T + 83T^{2} \)
89 \( 1 + 8.54T + 89T^{2} \)
97 \( 1 + 1.01T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.50525941613855983778913711831, −6.51203204660386837602016932275, −6.10595690204118612475945914640, −5.51979460626367386056396993645, −4.65270525920382430282327712927, −3.74387720608087193294452918061, −2.91795333132197516775267259453, −2.03309441394063048604748140624, −1.78537283136230774896346777660, 0, 1.78537283136230774896346777660, 2.03309441394063048604748140624, 2.91795333132197516775267259453, 3.74387720608087193294452918061, 4.65270525920382430282327712927, 5.51979460626367386056396993645, 6.10595690204118612475945914640, 6.51203204660386837602016932275, 7.50525941613855983778913711831

Graph of the $Z$-function along the critical line