Properties

Label 2-855-95.74-c1-0-29
Degree $2$
Conductor $855$
Sign $-0.00794 + 0.999i$
Analytic cond. $6.82720$
Root an. cond. $2.61289$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.93 − 0.340i)2-s + (1.73 + 0.632i)4-s + (2.15 + 0.612i)5-s + (0.586 − 0.338i)7-s + (0.257 + 0.148i)8-s + (−3.94 − 1.91i)10-s + (1.42 − 2.46i)11-s + (−3.06 − 3.65i)13-s + (−1.24 + 0.454i)14-s + (−3.27 − 2.75i)16-s + (−5.10 − 0.900i)17-s + (3.00 − 3.15i)19-s + (3.34 + 2.42i)20-s + (−3.58 + 4.26i)22-s + (0.359 − 0.987i)23-s + ⋯
L(s)  = 1  + (−1.36 − 0.240i)2-s + (0.868 + 0.316i)4-s + (0.961 + 0.274i)5-s + (0.221 − 0.127i)7-s + (0.0909 + 0.0525i)8-s + (−1.24 − 0.606i)10-s + (0.428 − 0.741i)11-s + (−0.849 − 1.01i)13-s + (−0.333 + 0.121i)14-s + (−0.819 − 0.687i)16-s + (−1.23 − 0.218i)17-s + (0.690 − 0.723i)19-s + (0.748 + 0.542i)20-s + (−0.763 + 0.910i)22-s + (0.0749 − 0.205i)23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 855 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.00794 + 0.999i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 855 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.00794 + 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(855\)    =    \(3^{2} \cdot 5 \cdot 19\)
Sign: $-0.00794 + 0.999i$
Analytic conductor: \(6.82720\)
Root analytic conductor: \(2.61289\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{855} (739, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 855,\ (\ :1/2),\ -0.00794 + 0.999i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.541160 - 0.545476i\)
\(L(\frac12)\) \(\approx\) \(0.541160 - 0.545476i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 + (-2.15 - 0.612i)T \)
19 \( 1 + (-3.00 + 3.15i)T \)
good2 \( 1 + (1.93 + 0.340i)T + (1.87 + 0.684i)T^{2} \)
7 \( 1 + (-0.586 + 0.338i)T + (3.5 - 6.06i)T^{2} \)
11 \( 1 + (-1.42 + 2.46i)T + (-5.5 - 9.52i)T^{2} \)
13 \( 1 + (3.06 + 3.65i)T + (-2.25 + 12.8i)T^{2} \)
17 \( 1 + (5.10 + 0.900i)T + (15.9 + 5.81i)T^{2} \)
23 \( 1 + (-0.359 + 0.987i)T + (-17.6 - 14.7i)T^{2} \)
29 \( 1 + (0.247 + 1.40i)T + (-27.2 + 9.91i)T^{2} \)
31 \( 1 + (0.135 + 0.234i)T + (-15.5 + 26.8i)T^{2} \)
37 \( 1 - 0.603iT - 37T^{2} \)
41 \( 1 + (5.15 + 4.32i)T + (7.11 + 40.3i)T^{2} \)
43 \( 1 + (1.92 + 5.28i)T + (-32.9 + 27.6i)T^{2} \)
47 \( 1 + (-7.77 + 1.37i)T + (44.1 - 16.0i)T^{2} \)
53 \( 1 + (-2.35 + 6.47i)T + (-40.6 - 34.0i)T^{2} \)
59 \( 1 + (1.75 - 9.96i)T + (-55.4 - 20.1i)T^{2} \)
61 \( 1 + (-7.02 - 2.55i)T + (46.7 + 39.2i)T^{2} \)
67 \( 1 + (4.05 - 0.714i)T + (62.9 - 22.9i)T^{2} \)
71 \( 1 + (7.14 - 2.60i)T + (54.3 - 45.6i)T^{2} \)
73 \( 1 + (-10.3 + 12.3i)T + (-12.6 - 71.8i)T^{2} \)
79 \( 1 + (11.3 + 9.54i)T + (13.7 + 77.7i)T^{2} \)
83 \( 1 + (-12.2 + 7.09i)T + (41.5 - 71.8i)T^{2} \)
89 \( 1 + (-6.31 + 5.29i)T + (15.4 - 87.6i)T^{2} \)
97 \( 1 + (5.64 + 0.994i)T + (91.1 + 33.1i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.959418580780371295143829754659, −9.087890359193305226691199889100, −8.640434887462307776891469164589, −7.49963066789275144535853727143, −6.84336459321880132439920151544, −5.67602752379018573845902052070, −4.72338515338401003328194665317, −2.97936650029356062527916327712, −2.02007665265976027906531712229, −0.60733379120941971772951149624, 1.45893397812573401538715516165, 2.25068190545964263459658962427, 4.22961948814712513314140372771, 5.15053109528791592399943618948, 6.49307685026490315223721631946, 6.99761056656346565524259502729, 8.034253799693252714620744792964, 8.914038699294161599919567402242, 9.518402925465957766186975333353, 9.945176004431102875685573685502

Graph of the $Z$-function along the critical line