Properties

Label 2-847-77.53-c1-0-26
Degree $2$
Conductor $847$
Sign $0.0912 + 0.995i$
Analytic cond. $6.76332$
Root an. cond. $2.60064$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.642 + 0.136i)2-s + (−0.199 − 1.90i)3-s + (−1.43 + 0.638i)4-s + (−2.38 + 2.65i)5-s + (0.388 + 1.19i)6-s + (−2.59 + 0.531i)7-s + (1.89 − 1.37i)8-s + (−0.642 + 0.136i)9-s + (1.17 − 2.02i)10-s + (1.5 + 2.59i)12-s + (−1.82 + 5.62i)13-s + (1.59 − 0.695i)14-s + (5.52 + 4.01i)15-s + (1.06 − 1.18i)16-s + (1.62 + 0.344i)17-s + (0.393 − 0.175i)18-s + ⋯
L(s)  = 1  + (−0.454 + 0.0965i)2-s + (−0.115 − 1.09i)3-s + (−0.716 + 0.319i)4-s + (−1.06 + 1.18i)5-s + (0.158 + 0.487i)6-s + (−0.979 + 0.200i)7-s + (0.670 − 0.486i)8-s + (−0.214 + 0.0455i)9-s + (0.370 − 0.641i)10-s + (0.433 + 0.749i)12-s + (−0.506 + 1.55i)13-s + (0.425 − 0.185i)14-s + (1.42 + 1.03i)15-s + (0.267 − 0.297i)16-s + (0.393 + 0.0835i)17-s + (0.0928 − 0.0413i)18-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 847 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0912 + 0.995i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 847 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.0912 + 0.995i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(847\)    =    \(7 \cdot 11^{2}\)
Sign: $0.0912 + 0.995i$
Analytic conductor: \(6.76332\)
Root analytic conductor: \(2.60064\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{847} (130, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 847,\ (\ :1/2),\ 0.0912 + 0.995i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.258721 - 0.236107i\)
\(L(\frac12)\) \(\approx\) \(0.258721 - 0.236107i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 + (2.59 - 0.531i)T \)
11 \( 1 \)
good2 \( 1 + (0.642 - 0.136i)T + (1.82 - 0.813i)T^{2} \)
3 \( 1 + (0.199 + 1.90i)T + (-2.93 + 0.623i)T^{2} \)
5 \( 1 + (2.38 - 2.65i)T + (-0.522 - 4.97i)T^{2} \)
13 \( 1 + (1.82 - 5.62i)T + (-10.5 - 7.64i)T^{2} \)
17 \( 1 + (-1.62 - 0.344i)T + (15.5 + 6.91i)T^{2} \)
19 \( 1 + (-1.35 - 0.602i)T + (12.7 + 14.1i)T^{2} \)
23 \( 1 + (1.67 + 2.89i)T + (-11.5 + 19.9i)T^{2} \)
29 \( 1 + (2.49 + 1.81i)T + (8.96 + 27.5i)T^{2} \)
31 \( 1 + (4.73 + 5.26i)T + (-3.24 + 30.8i)T^{2} \)
37 \( 1 + (-0.471 + 4.48i)T + (-36.1 - 7.69i)T^{2} \)
41 \( 1 + (-1.04 + 0.755i)T + (12.6 - 38.9i)T^{2} \)
43 \( 1 - 1.59T + 43T^{2} \)
47 \( 1 + (1.51 + 0.673i)T + (31.4 + 34.9i)T^{2} \)
53 \( 1 + (-6.17 - 6.85i)T + (-5.54 + 52.7i)T^{2} \)
59 \( 1 + (-8.08 + 3.60i)T + (39.4 - 43.8i)T^{2} \)
61 \( 1 + (4.47 - 4.96i)T + (-6.37 - 60.6i)T^{2} \)
67 \( 1 + (-4.91 + 8.50i)T + (-33.5 - 58.0i)T^{2} \)
71 \( 1 + (2.66 + 8.19i)T + (-57.4 + 41.7i)T^{2} \)
73 \( 1 + (-4.16 + 1.85i)T + (48.8 - 54.2i)T^{2} \)
79 \( 1 + (-6.25 + 1.32i)T + (72.1 - 32.1i)T^{2} \)
83 \( 1 + (-0.0518 - 0.159i)T + (-67.1 + 48.7i)T^{2} \)
89 \( 1 + (-1.28 - 2.22i)T + (-44.5 + 77.0i)T^{2} \)
97 \( 1 + (-3.00 + 9.26i)T + (-78.4 - 57.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.817111687046147185232517906737, −9.168613537429433531795325848384, −8.026895534633920335043793027474, −7.31953692558968492168794451567, −6.95232328640541492186312040904, −6.02081901696263062166481774513, −4.26953121455921800562547706633, −3.57015393308738938638238263100, −2.23692338220261857570668012108, −0.29016721050179524851902103059, 0.900286368683628097123299368153, 3.39464665564063080126792803356, 4.04815204668885961372628233063, 5.10262991277332219371760701635, 5.45446533327894104847276811497, 7.30347042926297850368985801840, 8.093907485920224313142264940936, 8.899017539662824875059346039714, 9.629244929502327386965749865381, 10.12954455717079996798978788957

Graph of the $Z$-function along the critical line