Properties

Label 2-847-77.58-c1-0-10
Degree $2$
Conductor $847$
Sign $-0.508 - 0.861i$
Analytic cond. $6.76332$
Root an. cond. $2.60064$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.0686 + 0.653i)2-s + (1.27 − 1.42i)3-s + (1.53 − 0.326i)4-s + (−3.26 + 1.45i)5-s + (1.01 + 0.738i)6-s + (−2.40 + 1.09i)7-s + (0.724 + 2.22i)8-s + (−0.0686 − 0.653i)9-s + (−1.17 − 2.02i)10-s + (1.5 − 2.59i)12-s + (−4.78 + 3.47i)13-s + (−0.879 − 1.49i)14-s + (−2.10 + 6.49i)15-s + (1.46 − 0.650i)16-s + (−0.173 + 1.64i)17-s + (0.421 − 0.0896i)18-s + ⋯
L(s)  = 1  + (0.0485 + 0.461i)2-s + (0.738 − 0.820i)3-s + (0.767 − 0.163i)4-s + (−1.45 + 0.649i)5-s + (0.414 + 0.301i)6-s + (−0.910 + 0.413i)7-s + (0.256 + 0.787i)8-s + (−0.0228 − 0.217i)9-s + (−0.370 − 0.641i)10-s + (0.433 − 0.749i)12-s + (−1.32 + 0.963i)13-s + (−0.235 − 0.400i)14-s + (−0.544 + 1.67i)15-s + (0.365 − 0.162i)16-s + (−0.0419 + 0.399i)17-s + (0.0994 − 0.0211i)18-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 847 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.508 - 0.861i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 847 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.508 - 0.861i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(847\)    =    \(7 \cdot 11^{2}\)
Sign: $-0.508 - 0.861i$
Analytic conductor: \(6.76332\)
Root analytic conductor: \(2.60064\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{847} (366, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 847,\ (\ :1/2),\ -0.508 - 0.861i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.575895 + 1.00887i\)
\(L(\frac12)\) \(\approx\) \(0.575895 + 1.00887i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 + (2.40 - 1.09i)T \)
11 \( 1 \)
good2 \( 1 + (-0.0686 - 0.653i)T + (-1.95 + 0.415i)T^{2} \)
3 \( 1 + (-1.27 + 1.42i)T + (-0.313 - 2.98i)T^{2} \)
5 \( 1 + (3.26 - 1.45i)T + (3.34 - 3.71i)T^{2} \)
13 \( 1 + (4.78 - 3.47i)T + (4.01 - 12.3i)T^{2} \)
17 \( 1 + (0.173 - 1.64i)T + (-16.6 - 3.53i)T^{2} \)
19 \( 1 + (-1.44 - 0.307i)T + (17.3 + 7.72i)T^{2} \)
23 \( 1 + (1.67 - 2.89i)T + (-11.5 - 19.9i)T^{2} \)
29 \( 1 + (0.951 - 2.92i)T + (-23.4 - 17.0i)T^{2} \)
31 \( 1 + (6.46 + 2.87i)T + (20.7 + 23.0i)T^{2} \)
37 \( 1 + (3.01 + 3.35i)T + (-3.86 + 36.7i)T^{2} \)
41 \( 1 + (-0.397 - 1.22i)T + (-33.1 + 24.0i)T^{2} \)
43 \( 1 + 1.59T + 43T^{2} \)
47 \( 1 + (-1.62 - 0.344i)T + (42.9 + 19.1i)T^{2} \)
53 \( 1 + (-8.42 - 3.75i)T + (35.4 + 39.3i)T^{2} \)
59 \( 1 + (8.65 - 1.84i)T + (53.8 - 23.9i)T^{2} \)
61 \( 1 + (-6.10 + 2.71i)T + (40.8 - 45.3i)T^{2} \)
67 \( 1 + (-4.91 - 8.50i)T + (-33.5 + 58.0i)T^{2} \)
71 \( 1 + (-6.97 - 5.06i)T + (21.9 + 67.5i)T^{2} \)
73 \( 1 + (-4.46 + 0.948i)T + (66.6 - 29.6i)T^{2} \)
79 \( 1 + (0.668 + 6.35i)T + (-77.2 + 16.4i)T^{2} \)
83 \( 1 + (-0.135 - 0.0986i)T + (25.6 + 78.9i)T^{2} \)
89 \( 1 + (-1.28 + 2.22i)T + (-44.5 - 77.0i)T^{2} \)
97 \( 1 + (7.87 - 5.72i)T + (29.9 - 92.2i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.58255339268716080310989097633, −9.479032202944544629919703145819, −8.461612570579504380860254660106, −7.54136844287800043658381186189, −7.23160408339741433776962416759, −6.61615737183595309512046413411, −5.38304609074527439504589349067, −3.88461892320387088923488891897, −2.88830406562608099447707713457, −2.03329333367379665593825168273, 0.46783707199136722260994173490, 2.65874392137752348941418219676, 3.46826208861896158032913123955, 4.04610592416039114009319048737, 5.12888817937985222051103210770, 6.73045199092899701221766775109, 7.50139861756659341482385711434, 8.177230695422003914351474130601, 9.232489336161546241842248792200, 9.967484197928675358261718335338

Graph of the $Z$-function along the critical line