Properties

Label 2-847-77.53-c1-0-39
Degree $2$
Conductor $847$
Sign $-0.343 + 0.939i$
Analytic cond. $6.76332$
Root an. cond. $2.60064$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.642 − 0.136i)2-s + (−0.199 − 1.90i)3-s + (−1.43 + 0.638i)4-s + (−2.38 + 2.65i)5-s + (−0.388 − 1.19i)6-s + (2.59 − 0.531i)7-s + (−1.89 + 1.37i)8-s + (−0.642 + 0.136i)9-s + (−1.17 + 2.02i)10-s + (1.5 + 2.59i)12-s + (1.82 − 5.62i)13-s + (1.59 − 0.695i)14-s + (5.52 + 4.01i)15-s + (1.06 − 1.18i)16-s + (−1.62 − 0.344i)17-s + (−0.393 + 0.175i)18-s + ⋯
L(s)  = 1  + (0.454 − 0.0965i)2-s + (−0.115 − 1.09i)3-s + (−0.716 + 0.319i)4-s + (−1.06 + 1.18i)5-s + (−0.158 − 0.487i)6-s + (0.979 − 0.200i)7-s + (−0.670 + 0.486i)8-s + (−0.214 + 0.0455i)9-s + (−0.370 + 0.641i)10-s + (0.433 + 0.749i)12-s + (0.506 − 1.55i)13-s + (0.425 − 0.185i)14-s + (1.42 + 1.03i)15-s + (0.267 − 0.297i)16-s + (−0.393 − 0.0835i)17-s + (−0.0928 + 0.0413i)18-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 847 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.343 + 0.939i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 847 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.343 + 0.939i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(847\)    =    \(7 \cdot 11^{2}\)
Sign: $-0.343 + 0.939i$
Analytic conductor: \(6.76332\)
Root analytic conductor: \(2.60064\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{847} (130, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 847,\ (\ :1/2),\ -0.343 + 0.939i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.607403 - 0.868664i\)
\(L(\frac12)\) \(\approx\) \(0.607403 - 0.868664i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 + (-2.59 + 0.531i)T \)
11 \( 1 \)
good2 \( 1 + (-0.642 + 0.136i)T + (1.82 - 0.813i)T^{2} \)
3 \( 1 + (0.199 + 1.90i)T + (-2.93 + 0.623i)T^{2} \)
5 \( 1 + (2.38 - 2.65i)T + (-0.522 - 4.97i)T^{2} \)
13 \( 1 + (-1.82 + 5.62i)T + (-10.5 - 7.64i)T^{2} \)
17 \( 1 + (1.62 + 0.344i)T + (15.5 + 6.91i)T^{2} \)
19 \( 1 + (1.35 + 0.602i)T + (12.7 + 14.1i)T^{2} \)
23 \( 1 + (1.67 + 2.89i)T + (-11.5 + 19.9i)T^{2} \)
29 \( 1 + (-2.49 - 1.81i)T + (8.96 + 27.5i)T^{2} \)
31 \( 1 + (4.73 + 5.26i)T + (-3.24 + 30.8i)T^{2} \)
37 \( 1 + (-0.471 + 4.48i)T + (-36.1 - 7.69i)T^{2} \)
41 \( 1 + (1.04 - 0.755i)T + (12.6 - 38.9i)T^{2} \)
43 \( 1 + 1.59T + 43T^{2} \)
47 \( 1 + (1.51 + 0.673i)T + (31.4 + 34.9i)T^{2} \)
53 \( 1 + (-6.17 - 6.85i)T + (-5.54 + 52.7i)T^{2} \)
59 \( 1 + (-8.08 + 3.60i)T + (39.4 - 43.8i)T^{2} \)
61 \( 1 + (-4.47 + 4.96i)T + (-6.37 - 60.6i)T^{2} \)
67 \( 1 + (-4.91 + 8.50i)T + (-33.5 - 58.0i)T^{2} \)
71 \( 1 + (2.66 + 8.19i)T + (-57.4 + 41.7i)T^{2} \)
73 \( 1 + (4.16 - 1.85i)T + (48.8 - 54.2i)T^{2} \)
79 \( 1 + (6.25 - 1.32i)T + (72.1 - 32.1i)T^{2} \)
83 \( 1 + (0.0518 + 0.159i)T + (-67.1 + 48.7i)T^{2} \)
89 \( 1 + (-1.28 - 2.22i)T + (-44.5 + 77.0i)T^{2} \)
97 \( 1 + (-3.00 + 9.26i)T + (-78.4 - 57.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.23080790154189576525654547747, −8.681589313830857087169095483045, −7.933580021146769712851306530544, −7.57029124211007817799847813317, −6.58846911436336385387080503100, −5.53939794233121485626530194023, −4.33813303928676651055929582061, −3.51598183340905965503049685809, −2.39639167287455949805667972491, −0.50648693361239795889756891278, 1.43482850962966686998020647009, 3.85963926816359325425552990827, 4.20027028187517868557459622038, 4.87194486824925899522383780023, 5.54125448437949218180608838160, 6.98549970397788630947024550199, 8.373509262388087712078056901808, 8.721429882584468631448819794762, 9.452613383132547655752456872812, 10.39695793939965542695772471473

Graph of the $Z$-function along the critical line