Properties

Label 2-847-1.1-c1-0-20
Degree $2$
Conductor $847$
Sign $1$
Analytic cond. $6.76332$
Root an. cond. $2.60064$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 2·4-s + 3·5-s − 7-s − 2·9-s − 2·12-s + 4·13-s + 3·15-s + 4·16-s + 6·17-s − 2·19-s − 6·20-s − 21-s + 3·23-s + 4·25-s − 5·27-s + 2·28-s + 6·29-s + 5·31-s − 3·35-s + 4·36-s + 11·37-s + 4·39-s − 6·41-s − 8·43-s − 6·45-s + 4·48-s + ⋯
L(s)  = 1  + 0.577·3-s − 4-s + 1.34·5-s − 0.377·7-s − 2/3·9-s − 0.577·12-s + 1.10·13-s + 0.774·15-s + 16-s + 1.45·17-s − 0.458·19-s − 1.34·20-s − 0.218·21-s + 0.625·23-s + 4/5·25-s − 0.962·27-s + 0.377·28-s + 1.11·29-s + 0.898·31-s − 0.507·35-s + 2/3·36-s + 1.80·37-s + 0.640·39-s − 0.937·41-s − 1.21·43-s − 0.894·45-s + 0.577·48-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 847 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 847 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(847\)    =    \(7 \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(6.76332\)
Root analytic conductor: \(2.60064\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 847,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.872878656\)
\(L(\frac12)\) \(\approx\) \(1.872878656\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad7 \( 1 + T \)
11 \( 1 \)
good2 \( 1 + p T^{2} \) 1.2.a
3 \( 1 - T + p T^{2} \) 1.3.ab
5 \( 1 - 3 T + p T^{2} \) 1.5.ad
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 - 3 T + p T^{2} \) 1.23.ad
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 - 5 T + p T^{2} \) 1.31.af
37 \( 1 - 11 T + p T^{2} \) 1.37.al
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + 9 T + p T^{2} \) 1.59.j
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 - 5 T + p T^{2} \) 1.67.af
71 \( 1 - 9 T + p T^{2} \) 1.71.aj
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 - 10 T + p T^{2} \) 1.79.ak
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 + 3 T + p T^{2} \) 1.89.d
97 \( 1 + T + p T^{2} \) 1.97.b
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.833984807551462085646167334269, −9.487459835858535121288790482109, −8.508833833811404945218630536704, −8.085327774959512351361821751845, −6.46084267575588440942544784885, −5.81865396854508245636334597208, −4.95929836259470425310107953583, −3.61592205748787980286928494613, −2.75685822824512438972431635156, −1.19698223664384976616389110079, 1.19698223664384976616389110079, 2.75685822824512438972431635156, 3.61592205748787980286928494613, 4.95929836259470425310107953583, 5.81865396854508245636334597208, 6.46084267575588440942544784885, 8.085327774959512351361821751845, 8.508833833811404945218630536704, 9.487459835858535121288790482109, 9.833984807551462085646167334269

Graph of the $Z$-function along the critical line