| L(s) = 1 | − 2·5-s + 4·7-s − 4·9-s − 6·13-s + 4·19-s + 25-s + 6·29-s − 12·31-s − 8·35-s + 8·37-s + 14·41-s + 12·43-s + 8·45-s − 14·53-s − 4·59-s − 2·61-s − 16·63-s + 12·65-s − 8·67-s + 4·71-s − 2·73-s − 8·79-s + 7·81-s − 20·83-s − 6·89-s − 24·91-s − 8·95-s + ⋯ |
| L(s) = 1 | − 0.894·5-s + 1.51·7-s − 4/3·9-s − 1.66·13-s + 0.917·19-s + 1/5·25-s + 1.11·29-s − 2.15·31-s − 1.35·35-s + 1.31·37-s + 2.18·41-s + 1.82·43-s + 1.19·45-s − 1.92·53-s − 0.520·59-s − 0.256·61-s − 2.01·63-s + 1.48·65-s − 0.977·67-s + 0.474·71-s − 0.234·73-s − 0.900·79-s + 7/9·81-s − 2.19·83-s − 0.635·89-s − 2.51·91-s − 0.820·95-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 71639296 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 71639296 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(=\) |
\(0\) |
| \(L(\frac12)\) |
\(=\) |
\(0\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.54200061416706413533794063835, −7.50874829121518353165241884472, −7.22244988842786564487293060540, −6.61352540912707418444380443015, −6.10358035863667193735429526056, −5.80659716340046450683004002955, −5.57540053956246072112418951471, −5.14332871247750322455392712715, −4.63444850735236045105454576394, −4.56773644710538837415838381282, −4.32590002931990910461433092958, −3.52892290302461112451865494721, −3.38163071282561998056299374169, −2.74368143606713615755657805109, −2.43974391005491642025762445668, −2.23139290360532520884205941446, −1.24898941727549985984316081126, −1.17426576279374763593641468841, 0, 0,
1.17426576279374763593641468841, 1.24898941727549985984316081126, 2.23139290360532520884205941446, 2.43974391005491642025762445668, 2.74368143606713615755657805109, 3.38163071282561998056299374169, 3.52892290302461112451865494721, 4.32590002931990910461433092958, 4.56773644710538837415838381282, 4.63444850735236045105454576394, 5.14332871247750322455392712715, 5.57540053956246072112418951471, 5.80659716340046450683004002955, 6.10358035863667193735429526056, 6.61352540912707418444380443015, 7.22244988842786564487293060540, 7.50874829121518353165241884472, 7.54200061416706413533794063835