| L(s) = 1 | + 2·5-s − 4·7-s − 4·9-s − 6·13-s − 4·19-s + 25-s + 6·29-s − 12·31-s − 8·35-s − 8·37-s + 14·41-s − 12·43-s − 8·45-s + 14·53-s − 4·59-s + 2·61-s + 16·63-s − 12·65-s + 8·67-s + 4·71-s − 2·73-s + 8·79-s + 7·81-s + 20·83-s + 6·89-s + 24·91-s − 8·95-s + ⋯ |
| L(s) = 1 | + 0.894·5-s − 1.51·7-s − 4/3·9-s − 1.66·13-s − 0.917·19-s + 1/5·25-s + 1.11·29-s − 2.15·31-s − 1.35·35-s − 1.31·37-s + 2.18·41-s − 1.82·43-s − 1.19·45-s + 1.92·53-s − 0.520·59-s + 0.256·61-s + 2.01·63-s − 1.48·65-s + 0.977·67-s + 0.474·71-s − 0.234·73-s + 0.900·79-s + 7/9·81-s + 2.19·83-s + 0.635·89-s + 2.51·91-s − 0.820·95-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 71639296 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 71639296 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(=\) |
\(0\) |
| \(L(\frac12)\) |
\(=\) |
\(0\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.46383316647393634398040080318, −7.28026073023927640244801134615, −6.80425571818736708516700749523, −6.58700485248273914342078480405, −6.19305243053848442965509531419, −6.01819141157946014155925732868, −5.47156803992814637410600360914, −5.34667347145180449208387374335, −4.79635637906008782137330577578, −4.73024935033616056172109358151, −3.74331202463811133453121485926, −3.71535499133027744734508651166, −3.31356060986188547824744166369, −2.70944569468183948099483650835, −2.35407118305330686133972658050, −2.31688765573441999799629889760, −1.66446434351085741482185620350, −0.826507723624285230277400337504, 0, 0,
0.826507723624285230277400337504, 1.66446434351085741482185620350, 2.31688765573441999799629889760, 2.35407118305330686133972658050, 2.70944569468183948099483650835, 3.31356060986188547824744166369, 3.71535499133027744734508651166, 3.74331202463811133453121485926, 4.73024935033616056172109358151, 4.79635637906008782137330577578, 5.34667347145180449208387374335, 5.47156803992814637410600360914, 6.01819141157946014155925732868, 6.19305243053848442965509531419, 6.58700485248273914342078480405, 6.80425571818736708516700749523, 7.28026073023927640244801134615, 7.46383316647393634398040080318