Properties

Label 6-8450e3-1.1-c1e3-0-1
Degree $6$
Conductor $603351125000$
Sign $1$
Analytic cond. $307186.$
Root an. cond. $8.21423$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·2-s + 6·4-s − 3·7-s − 10·8-s + 3·11-s + 9·14-s + 15·16-s − 9·17-s + 6·19-s − 9·22-s − 2·27-s − 18·28-s − 9·29-s + 15·31-s − 21·32-s + 27·34-s + 12·37-s − 18·38-s + 6·41-s − 12·43-s + 18·44-s + 3·47-s − 6·49-s − 9·53-s + 6·54-s + 30·56-s + 27·58-s + ⋯
L(s)  = 1  − 2.12·2-s + 3·4-s − 1.13·7-s − 3.53·8-s + 0.904·11-s + 2.40·14-s + 15/4·16-s − 2.18·17-s + 1.37·19-s − 1.91·22-s − 0.384·27-s − 3.40·28-s − 1.67·29-s + 2.69·31-s − 3.71·32-s + 4.63·34-s + 1.97·37-s − 2.91·38-s + 0.937·41-s − 1.82·43-s + 2.71·44-s + 0.437·47-s − 6/7·49-s − 1.23·53-s + 0.816·54-s + 4.00·56-s + 3.54·58-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{3} \cdot 5^{6} \cdot 13^{6}\right)^{s/2} \, \Gamma_{\C}(s)^{3} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{3} \cdot 5^{6} \cdot 13^{6}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{3} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(6\)
Conductor: \(2^{3} \cdot 5^{6} \cdot 13^{6}\)
Sign: $1$
Analytic conductor: \(307186.\)
Root analytic conductor: \(8.21423\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((6,\ 2^{3} \cdot 5^{6} \cdot 13^{6} ,\ ( \ : 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(0.6217328498\)
\(L(\frac12)\) \(\approx\) \(0.6217328498\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( ( 1 + T )^{3} \)
5 \( 1 \)
13 \( 1 \)
good3$D_{6}$ \( 1 + 2 T^{3} + p^{3} T^{6} \)
7$S_4\times C_2$ \( 1 + 3 T + 15 T^{2} + 36 T^{3} + 15 p T^{4} + 3 p^{2} T^{5} + p^{3} T^{6} \)
11$S_4\times C_2$ \( 1 - 3 T + 6 T^{2} - 21 T^{3} + 6 p T^{4} - 3 p^{2} T^{5} + p^{3} T^{6} \)
17$C_2$ \( ( 1 + 3 T + p T^{2} )^{3} \)
19$S_4\times C_2$ \( 1 - 6 T + 60 T^{2} - 216 T^{3} + 60 p T^{4} - 6 p^{2} T^{5} + p^{3} T^{6} \)
23$S_4\times C_2$ \( 1 + 27 T^{2} - 24 T^{3} + 27 p T^{4} + p^{3} T^{6} \)
29$S_4\times C_2$ \( 1 + 9 T + 63 T^{2} + 282 T^{3} + 63 p T^{4} + 9 p^{2} T^{5} + p^{3} T^{6} \)
31$S_4\times C_2$ \( 1 - 15 T + 141 T^{2} - 870 T^{3} + 141 p T^{4} - 15 p^{2} T^{5} + p^{3} T^{6} \)
37$S_4\times C_2$ \( 1 - 12 T + 129 T^{2} - 816 T^{3} + 129 p T^{4} - 12 p^{2} T^{5} + p^{3} T^{6} \)
41$S_4\times C_2$ \( 1 - 6 T + 60 T^{2} - 132 T^{3} + 60 p T^{4} - 6 p^{2} T^{5} + p^{3} T^{6} \)
43$C_2$ \( ( 1 + 4 T + p T^{2} )^{3} \)
47$S_4\times C_2$ \( 1 - 3 T + 69 T^{2} - 426 T^{3} + 69 p T^{4} - 3 p^{2} T^{5} + p^{3} T^{6} \)
53$S_4\times C_2$ \( 1 + 9 T + 135 T^{2} + 942 T^{3} + 135 p T^{4} + 9 p^{2} T^{5} + p^{3} T^{6} \)
59$S_4\times C_2$ \( 1 - 15 T + 105 T^{2} - 546 T^{3} + 105 p T^{4} - 15 p^{2} T^{5} + p^{3} T^{6} \)
61$S_4\times C_2$ \( 1 + 15 T + 177 T^{2} + 1604 T^{3} + 177 p T^{4} + 15 p^{2} T^{5} + p^{3} T^{6} \)
67$S_4\times C_2$ \( 1 - 9 T + 186 T^{2} - 1083 T^{3} + 186 p T^{4} - 9 p^{2} T^{5} + p^{3} T^{6} \)
71$C_2$ \( ( 1 + p T^{2} )^{3} \)
73$S_4\times C_2$ \( 1 - 6 T + 84 T^{2} + 24 T^{3} + 84 p T^{4} - 6 p^{2} T^{5} + p^{3} T^{6} \)
79$S_4\times C_2$ \( 1 + 18 T + 315 T^{2} + 2864 T^{3} + 315 p T^{4} + 18 p^{2} T^{5} + p^{3} T^{6} \)
83$S_4\times C_2$ \( 1 + 15 T + 294 T^{2} + 2481 T^{3} + 294 p T^{4} + 15 p^{2} T^{5} + p^{3} T^{6} \)
89$S_4\times C_2$ \( 1 + 24 T + 384 T^{2} + 3966 T^{3} + 384 p T^{4} + 24 p^{2} T^{5} + p^{3} T^{6} \)
97$S_4\times C_2$ \( 1 + 30 T + 555 T^{2} + 6444 T^{3} + 555 p T^{4} + 30 p^{2} T^{5} + p^{3} T^{6} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{6} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.89583484843580398729790317457, −6.70261721324341612239964172614, −6.51635611496160342127726239265, −6.44371088474770202355271296893, −6.01574802273266631100159662934, −6.01293748468393471241139130545, −5.63645376623594353948143883805, −5.34308535044683439151861804235, −5.19859754487782953873703600785, −4.61386001058717616359999864607, −4.39021985516740310295793355322, −4.20915087562386301009816096698, −4.14822030574746653063806936638, −3.53237837229887731391358510950, −3.25852880033337233422968655529, −3.22110246684752408933198903503, −2.65827374142801969685897406633, −2.53878819120080944812582324230, −2.52538679438836504537096635274, −1.86197238039665732481560289652, −1.62611692358945464710492520605, −1.25420877052718027038594773668, −1.15184606277012740608968091174, −0.41635239379357541054152998322, −0.32299476978437139009691436830, 0.32299476978437139009691436830, 0.41635239379357541054152998322, 1.15184606277012740608968091174, 1.25420877052718027038594773668, 1.62611692358945464710492520605, 1.86197238039665732481560289652, 2.52538679438836504537096635274, 2.53878819120080944812582324230, 2.65827374142801969685897406633, 3.22110246684752408933198903503, 3.25852880033337233422968655529, 3.53237837229887731391358510950, 4.14822030574746653063806936638, 4.20915087562386301009816096698, 4.39021985516740310295793355322, 4.61386001058717616359999864607, 5.19859754487782953873703600785, 5.34308535044683439151861804235, 5.63645376623594353948143883805, 6.01293748468393471241139130545, 6.01574802273266631100159662934, 6.44371088474770202355271296893, 6.51635611496160342127726239265, 6.70261721324341612239964172614, 6.89583484843580398729790317457

Graph of the $Z$-function along the critical line