Properties

Label 8-845e4-1.1-c1e4-0-18
Degree $8$
Conductor $509831700625$
Sign $1$
Analytic cond. $2072.69$
Root an. cond. $2.59756$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s + 3·4-s + 4·5-s − 4·7-s + 2·8-s + 4·9-s + 8·10-s − 4·11-s − 8·14-s + 4·17-s + 8·18-s − 4·19-s + 12·20-s − 8·22-s + 10·25-s − 12·28-s + 24·31-s − 6·32-s + 8·34-s − 16·35-s + 12·36-s − 8·38-s + 8·40-s + 12·41-s + 8·43-s − 12·44-s + 16·45-s + ⋯
L(s)  = 1  + 1.41·2-s + 3/2·4-s + 1.78·5-s − 1.51·7-s + 0.707·8-s + 4/3·9-s + 2.52·10-s − 1.20·11-s − 2.13·14-s + 0.970·17-s + 1.88·18-s − 0.917·19-s + 2.68·20-s − 1.70·22-s + 2·25-s − 2.26·28-s + 4.31·31-s − 1.06·32-s + 1.37·34-s − 2.70·35-s + 2·36-s − 1.29·38-s + 1.26·40-s + 1.87·41-s + 1.21·43-s − 1.80·44-s + 2.38·45-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(5^{4} \cdot 13^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(5^{4} \cdot 13^{8}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(5^{4} \cdot 13^{8}\)
Sign: $1$
Analytic conductor: \(2072.69\)
Root analytic conductor: \(2.59756\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 5^{4} \cdot 13^{8} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(11.61375489\)
\(L(\frac12)\) \(\approx\) \(11.61375489\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad5$C_1$ \( ( 1 - T )^{4} \)
13 \( 1 \)
good2$D_4\times C_2$ \( 1 - p T + T^{2} + p T^{3} - 3 T^{4} + p^{2} T^{5} + p^{2} T^{6} - p^{4} T^{7} + p^{4} T^{8} \)
3$C_2^3$ \( 1 - 4 T^{2} + 7 T^{4} - 4 p^{2} T^{6} + p^{4} T^{8} \)
7$C_4\times C_2$ \( 1 + 4 T + 6 T^{2} - 16 T^{3} - 61 T^{4} - 16 p T^{5} + 6 p^{2} T^{6} + 4 p^{3} T^{7} + p^{4} T^{8} \)
11$D_4\times C_2$ \( 1 + 4 T - 8 T^{2} + 8 T^{3} + 279 T^{4} + 8 p T^{5} - 8 p^{2} T^{6} + 4 p^{3} T^{7} + p^{4} T^{8} \)
17$D_4\times C_2$ \( 1 - 4 T - 14 T^{2} + 16 T^{3} + 339 T^{4} + 16 p T^{5} - 14 p^{2} T^{6} - 4 p^{3} T^{7} + p^{4} T^{8} \)
19$D_4\times C_2$ \( 1 + 4 T - 24 T^{2} + 8 T^{3} + 935 T^{4} + 8 p T^{5} - 24 p^{2} T^{6} + 4 p^{3} T^{7} + p^{4} T^{8} \)
23$C_2^3$ \( 1 - 44 T^{2} + 1407 T^{4} - 44 p^{2} T^{6} + p^{4} T^{8} \)
29$C_2^3$ \( 1 - 26 T^{2} - 165 T^{4} - 26 p^{2} T^{6} + p^{4} T^{8} \)
31$D_{4}$ \( ( 1 - 12 T + 80 T^{2} - 12 p T^{3} + p^{2} T^{4} )^{2} \)
37$C_2^3$ \( 1 - 2 T^{2} - 1365 T^{4} - 2 p^{2} T^{6} + p^{4} T^{8} \)
41$D_4\times C_2$ \( 1 - 12 T + 34 T^{2} - 336 T^{3} + 4515 T^{4} - 336 p T^{5} + 34 p^{2} T^{6} - 12 p^{3} T^{7} + p^{4} T^{8} \)
43$D_4\times C_2$ \( 1 - 8 T + 12 T^{2} + 272 T^{3} - 1897 T^{4} + 272 p T^{5} + 12 p^{2} T^{6} - 8 p^{3} T^{7} + p^{4} T^{8} \)
47$D_{4}$ \( ( 1 + 4 T + 90 T^{2} + 4 p T^{3} + p^{2} T^{4} )^{2} \)
53$D_{4}$ \( ( 1 + 12 T + 70 T^{2} + 12 p T^{3} + p^{2} T^{4} )^{2} \)
59$D_4\times C_2$ \( 1 + 12 T + 8 T^{2} + 216 T^{3} + 6519 T^{4} + 216 p T^{5} + 8 p^{2} T^{6} + 12 p^{3} T^{7} + p^{4} T^{8} \)
61$C_2^2$ \( ( 1 - 8 T + 3 T^{2} - 8 p T^{3} + p^{2} T^{4} )^{2} \)
67$C_2^2$ \( ( 1 - 2 T - 63 T^{2} - 2 p T^{3} + p^{2} T^{4} )^{2} \)
71$D_4\times C_2$ \( 1 + 4 T - 32 T^{2} - 376 T^{3} - 3873 T^{4} - 376 p T^{5} - 32 p^{2} T^{6} + 4 p^{3} T^{7} + p^{4} T^{8} \)
73$C_2^2$ \( ( 1 + 74 T^{2} + p^{2} T^{4} )^{2} \)
79$C_2^2$ \( ( 1 + 86 T^{2} + p^{2} T^{4} )^{2} \)
83$D_{4}$ \( ( 1 + 12 T + 194 T^{2} + 12 p T^{3} + p^{2} T^{4} )^{2} \)
89$C_2^2$ \( ( 1 + 6 T - 53 T^{2} + 6 p T^{3} + p^{2} T^{4} )^{2} \)
97$D_4\times C_2$ \( 1 - 4 T - 150 T^{2} + 112 T^{3} + 16595 T^{4} + 112 p T^{5} - 150 p^{2} T^{6} - 4 p^{3} T^{7} + p^{4} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.14787305973108074570996120835, −7.08066109336215834689609311092, −6.89359951301324352471513729260, −6.24052934961422595554113917239, −6.23473579132421504279672423367, −6.16560501548908950516357675065, −6.11410738487992635146134455495, −5.76510288896007166397074387518, −5.60184941456965970362800750404, −5.26096721842027611609768949040, −4.75414282311738684993206059577, −4.70957106681394500443948931938, −4.57522932446634176927990328914, −4.32846172225717505233816277063, −4.10011380258656297868106068090, −3.50558377018136617029428934228, −3.18040624542011556755735774814, −3.00162019023852644275567254205, −2.93754194993859792651876414987, −2.75463549871658897375841066997, −2.09408569909734086647969968976, −1.95889447291309011866925635794, −1.76557519005309632906145936520, −0.883307401964151858037114300272, −0.75417418157699704952913534633, 0.75417418157699704952913534633, 0.883307401964151858037114300272, 1.76557519005309632906145936520, 1.95889447291309011866925635794, 2.09408569909734086647969968976, 2.75463549871658897375841066997, 2.93754194993859792651876414987, 3.00162019023852644275567254205, 3.18040624542011556755735774814, 3.50558377018136617029428934228, 4.10011380258656297868106068090, 4.32846172225717505233816277063, 4.57522932446634176927990328914, 4.70957106681394500443948931938, 4.75414282311738684993206059577, 5.26096721842027611609768949040, 5.60184941456965970362800750404, 5.76510288896007166397074387518, 6.11410738487992635146134455495, 6.16560501548908950516357675065, 6.23473579132421504279672423367, 6.24052934961422595554113917239, 6.89359951301324352471513729260, 7.08066109336215834689609311092, 7.14787305973108074570996120835

Graph of the $Z$-function along the critical line