Properties

Label 8-29e8-1.1-c1e4-0-1
Degree $8$
Conductor $500246412961$
Sign $1$
Analytic cond. $2033.72$
Root an. cond. $2.59141$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·4-s + 4·5-s + 6·9-s + 4·13-s + 3·16-s + 8·20-s − 8·23-s − 10·25-s + 12·36-s + 24·45-s − 12·49-s + 8·52-s + 4·53-s + 8·59-s + 12·64-s + 16·65-s + 24·71-s + 12·80-s + 17·81-s + 8·83-s − 16·92-s − 20·100-s − 8·103-s − 48·107-s − 28·109-s − 32·115-s + 24·117-s + ⋯
L(s)  = 1  + 4-s + 1.78·5-s + 2·9-s + 1.10·13-s + 3/4·16-s + 1.78·20-s − 1.66·23-s − 2·25-s + 2·36-s + 3.57·45-s − 1.71·49-s + 1.10·52-s + 0.549·53-s + 1.04·59-s + 3/2·64-s + 1.98·65-s + 2.84·71-s + 1.34·80-s + 17/9·81-s + 0.878·83-s − 1.66·92-s − 2·100-s − 0.788·103-s − 4.64·107-s − 2.68·109-s − 2.98·115-s + 2.21·117-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(29^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(29^{8}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(29^{8}\)
Sign: $1$
Analytic conductor: \(2033.72\)
Root analytic conductor: \(2.59141\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 29^{8} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(7.037093135\)
\(L(\frac12)\) \(\approx\) \(7.037093135\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad29 \( 1 \)
good2$D_4\times C_2$ \( 1 - p T^{2} + T^{4} - p^{3} T^{6} + p^{4} T^{8} \)
3$D_4\times C_2$ \( 1 - 2 p T^{2} + 19 T^{4} - 2 p^{3} T^{6} + p^{4} T^{8} \)
5$C_2$ \( ( 1 - T + p T^{2} )^{4} \)
7$C_2^2$ \( ( 1 + 6 T^{2} + p^{2} T^{4} )^{2} \)
11$D_4\times C_2$ \( 1 - 38 T^{2} + 595 T^{4} - 38 p^{2} T^{6} + p^{4} T^{8} \)
13$D_{4}$ \( ( 1 - 2 T + 19 T^{2} - 2 p T^{3} + p^{2} T^{4} )^{2} \)
17$D_4\times C_2$ \( 1 - 44 T^{2} + 934 T^{4} - 44 p^{2} T^{6} + p^{4} T^{8} \)
19$C_2^2$ \( ( 1 - 2 T^{2} + p^{2} T^{4} )^{2} \)
23$D_{4}$ \( ( 1 + 4 T + 18 T^{2} + 4 p T^{3} + p^{2} T^{4} )^{2} \)
31$D_4\times C_2$ \( 1 - 6 T^{2} + 131 T^{4} - 6 p^{2} T^{6} + p^{4} T^{8} \)
37$C_2^2$ \( ( 1 - 58 T^{2} + p^{2} T^{4} )^{2} \)
41$D_4\times C_2$ \( 1 + 12 T^{2} - 1210 T^{4} + 12 p^{2} T^{6} + p^{4} T^{8} \)
43$D_4\times C_2$ \( 1 - 118 T^{2} + 6979 T^{4} - 118 p^{2} T^{6} + p^{4} T^{8} \)
47$D_4\times C_2$ \( 1 - 150 T^{2} + 9971 T^{4} - 150 p^{2} T^{6} + p^{4} T^{8} \)
53$D_{4}$ \( ( 1 - 2 T + 35 T^{2} - 2 p T^{3} + p^{2} T^{4} )^{2} \)
59$D_{4}$ \( ( 1 - 4 T + 90 T^{2} - 4 p T^{3} + p^{2} T^{4} )^{2} \)
61$D_4\times C_2$ \( 1 - 220 T^{2} + 19414 T^{4} - 220 p^{2} T^{6} + p^{4} T^{8} \)
67$C_2^2$ \( ( 1 + 102 T^{2} + p^{2} T^{4} )^{2} \)
71$C_4$ \( ( 1 - 12 T + 170 T^{2} - 12 p T^{3} + p^{2} T^{4} )^{2} \)
73$C_2^2$ \( ( 1 - 130 T^{2} + p^{2} T^{4} )^{2} \)
79$D_4\times C_2$ \( 1 - 310 T^{2} + 36499 T^{4} - 310 p^{2} T^{6} + p^{4} T^{8} \)
83$D_{4}$ \( ( 1 - 4 T + 138 T^{2} - 4 p T^{3} + p^{2} T^{4} )^{2} \)
89$D_4\times C_2$ \( 1 - 180 T^{2} + 19334 T^{4} - 180 p^{2} T^{6} + p^{4} T^{8} \)
97$D_4\times C_2$ \( 1 - 212 T^{2} + 25446 T^{4} - 212 p^{2} T^{6} + p^{4} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.25445764760947490713352480536, −6.94069113933645045785152950480, −6.77608095644138810887472453383, −6.65611525397985221952073520646, −6.49320206463116236873727458648, −6.10235573169927058960045841122, −5.94659844671640494982075655746, −5.82236966444007733438604789254, −5.49506598388853544238877724714, −5.45111779888179061077947235226, −5.06867995510784423562311997936, −4.71637901956536614673745785569, −4.42006798095713443909397669926, −3.98926573870603428691897100429, −3.98357917832470431981663563671, −3.70162289364610289297689955157, −3.52542532797285951597610386244, −3.10264437230421786189216456328, −2.40105092694515958317126692962, −2.31551975608232533267039205087, −2.23185104576905636266353422527, −1.68558100572780546595009048676, −1.48273327199274240323310656581, −1.44667857738918146319165540035, −0.57153214305092546042254282853, 0.57153214305092546042254282853, 1.44667857738918146319165540035, 1.48273327199274240323310656581, 1.68558100572780546595009048676, 2.23185104576905636266353422527, 2.31551975608232533267039205087, 2.40105092694515958317126692962, 3.10264437230421786189216456328, 3.52542532797285951597610386244, 3.70162289364610289297689955157, 3.98357917832470431981663563671, 3.98926573870603428691897100429, 4.42006798095713443909397669926, 4.71637901956536614673745785569, 5.06867995510784423562311997936, 5.45111779888179061077947235226, 5.49506598388853544238877724714, 5.82236966444007733438604789254, 5.94659844671640494982075655746, 6.10235573169927058960045841122, 6.49320206463116236873727458648, 6.65611525397985221952073520646, 6.77608095644138810887472453383, 6.94069113933645045785152950480, 7.25445764760947490713352480536

Graph of the $Z$-function along the critical line