Properties

Label 2-825-1.1-c5-0-74
Degree $2$
Conductor $825$
Sign $1$
Analytic cond. $132.316$
Root an. cond. $11.5028$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 10.4·2-s + 9·3-s + 76.7·4-s − 93.8·6-s + 21.9·7-s − 467.·8-s + 81·9-s + 121·11-s + 691.·12-s + 460.·13-s − 228.·14-s + 2.41e3·16-s + 2.31e3·17-s − 844.·18-s + 800.·19-s + 197.·21-s − 1.26e3·22-s + 4.78e3·23-s − 4.20e3·24-s − 4.80e3·26-s + 729·27-s + 1.68e3·28-s + 911.·29-s − 944.·31-s − 1.02e4·32-s + 1.08e3·33-s − 2.41e4·34-s + ⋯
L(s)  = 1  − 1.84·2-s + 0.577·3-s + 2.39·4-s − 1.06·6-s + 0.168·7-s − 2.58·8-s + 0.333·9-s + 0.301·11-s + 1.38·12-s + 0.756·13-s − 0.311·14-s + 2.35·16-s + 1.94·17-s − 0.614·18-s + 0.508·19-s + 0.0975·21-s − 0.555·22-s + 1.88·23-s − 1.49·24-s − 1.39·26-s + 0.192·27-s + 0.405·28-s + 0.201·29-s − 0.176·31-s − 1.76·32-s + 0.174·33-s − 3.58·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 825 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 825 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(825\)    =    \(3 \cdot 5^{2} \cdot 11\)
Sign: $1$
Analytic conductor: \(132.316\)
Root analytic conductor: \(11.5028\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 825,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(1.678484673\)
\(L(\frac12)\) \(\approx\) \(1.678484673\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - 9T \)
5 \( 1 \)
11 \( 1 - 121T \)
good2 \( 1 + 10.4T + 32T^{2} \)
7 \( 1 - 21.9T + 1.68e4T^{2} \)
13 \( 1 - 460.T + 3.71e5T^{2} \)
17 \( 1 - 2.31e3T + 1.41e6T^{2} \)
19 \( 1 - 800.T + 2.47e6T^{2} \)
23 \( 1 - 4.78e3T + 6.43e6T^{2} \)
29 \( 1 - 911.T + 2.05e7T^{2} \)
31 \( 1 + 944.T + 2.86e7T^{2} \)
37 \( 1 - 1.28e4T + 6.93e7T^{2} \)
41 \( 1 - 8.71e3T + 1.15e8T^{2} \)
43 \( 1 + 2.05e4T + 1.47e8T^{2} \)
47 \( 1 + 9.28e3T + 2.29e8T^{2} \)
53 \( 1 - 2.32e4T + 4.18e8T^{2} \)
59 \( 1 - 2.07e4T + 7.14e8T^{2} \)
61 \( 1 + 6.62e3T + 8.44e8T^{2} \)
67 \( 1 - 5.79e4T + 1.35e9T^{2} \)
71 \( 1 - 3.83e4T + 1.80e9T^{2} \)
73 \( 1 - 8.43e3T + 2.07e9T^{2} \)
79 \( 1 + 1.68e3T + 3.07e9T^{2} \)
83 \( 1 - 7.79e3T + 3.93e9T^{2} \)
89 \( 1 + 8.30e4T + 5.58e9T^{2} \)
97 \( 1 - 1.46e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.548334453985383136203376268761, −8.584184851402239688693044166088, −8.042898502251212155093139455146, −7.28302239248191801033483747157, −6.47045802957837115103973924894, −5.29519671774897708371426781496, −3.54180206951873345287134996163, −2.70667553379694967988282405794, −1.36460481638896279307194559772, −0.884452402298638085814471200814, 0.884452402298638085814471200814, 1.36460481638896279307194559772, 2.70667553379694967988282405794, 3.54180206951873345287134996163, 5.29519671774897708371426781496, 6.47045802957837115103973924894, 7.28302239248191801033483747157, 8.042898502251212155093139455146, 8.584184851402239688693044166088, 9.548334453985383136203376268761

Graph of the $Z$-function along the critical line