| L(s) = 1 | + (0.115 + 0.200i)2-s + (0.973 − 1.68i)4-s + 2.23·5-s + (0.5 − 0.866i)7-s + 0.913·8-s + (0.258 + 0.447i)10-s + (1.66 + 2.87i)11-s + (3.40 − 1.19i)13-s + 0.231·14-s + (−1.84 − 3.18i)16-s + (−0.687 + 1.19i)17-s + (−1.61 + 2.80i)19-s + (2.17 − 3.76i)20-s + (−0.384 + 0.665i)22-s + (0.419 + 0.726i)23-s + ⋯ |
| L(s) = 1 | + (0.0817 + 0.141i)2-s + (0.486 − 0.842i)4-s + 0.997·5-s + (0.188 − 0.327i)7-s + 0.322·8-s + (0.0816 + 0.141i)10-s + (0.500 + 0.867i)11-s + (0.943 − 0.330i)13-s + 0.0618·14-s + (−0.460 − 0.797i)16-s + (−0.166 + 0.288i)17-s + (−0.371 + 0.642i)19-s + (0.485 − 0.841i)20-s + (−0.0819 + 0.141i)22-s + (0.0874 + 0.151i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 819 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.903 + 0.427i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 819 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.903 + 0.427i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(2.24588 - 0.504823i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(2.24588 - 0.504823i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 \) |
| 7 | \( 1 + (-0.5 + 0.866i)T \) |
| 13 | \( 1 + (-3.40 + 1.19i)T \) |
| good | 2 | \( 1 + (-0.115 - 0.200i)T + (-1 + 1.73i)T^{2} \) |
| 5 | \( 1 - 2.23T + 5T^{2} \) |
| 11 | \( 1 + (-1.66 - 2.87i)T + (-5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (0.687 - 1.19i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (1.61 - 2.80i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-0.419 - 0.726i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (0.303 + 0.525i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 - 1.71T + 31T^{2} \) |
| 37 | \( 1 + (0.776 + 1.34i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (4.58 + 7.94i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (0.615 - 1.06i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 - 1.62T + 47T^{2} \) |
| 53 | \( 1 + 8.39T + 53T^{2} \) |
| 59 | \( 1 + (-4.41 + 7.64i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (2.73 - 4.73i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-5.09 - 8.82i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (2.60 - 4.51i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + 3.96T + 73T^{2} \) |
| 79 | \( 1 - 6.45T + 79T^{2} \) |
| 83 | \( 1 - 4.64T + 83T^{2} \) |
| 89 | \( 1 + (-4.56 - 7.90i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-7.67 + 13.3i)T + (-48.5 - 84.0i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.17381452761675557113253216157, −9.568904623775564918435935560416, −8.569709729765463292274722519891, −7.41067809307786975792646982800, −6.50113104510210448499844567322, −5.91261349111171978170090492364, −5.01324396248244041584596615679, −3.83546130091279791845836906343, −2.17872606804282345515574259826, −1.36560884520607906042953561646,
1.59049622045341954304734550592, 2.70619079108363743403151691882, 3.70711969487671020366548681278, 4.92057519829078949472155369007, 6.20545824693087430476595341921, 6.54780366700938742341383869378, 7.84233082640887675007859122117, 8.698567268735845939017931840460, 9.261858125157863425640120101678, 10.43985965991486438248870351683