| L(s)  = 1  |   + 1.73i·2-s     − 0.999·4-s   + (−1.5 + 0.866i)5-s     + (−2 + 1.73i)7-s   + 1.73i·8-s     + (−1.49 − 2.59i)10-s   + (4.5 − 2.59i)11-s     + (−1 + 3.46i)13-s   + (−2.99 − 3.46i)14-s     − 5·16-s   − 6·17-s     + (−1.5 − 0.866i)19-s   + (1.49 − 0.866i)20-s     + (4.5 + 7.79i)22-s       + (−1 + 1.73i)25-s   + (−5.99 − 1.73i)26-s  + ⋯ | 
 
| L(s)  = 1  |   + 1.22i·2-s     − 0.499·4-s   + (−0.670 + 0.387i)5-s     + (−0.755 + 0.654i)7-s   + 0.612i·8-s     + (−0.474 − 0.821i)10-s   + (1.35 − 0.783i)11-s     + (−0.277 + 0.960i)13-s   + (−0.801 − 0.925i)14-s     − 1.25·16-s   − 1.45·17-s     + (−0.344 − 0.198i)19-s   + (0.335 − 0.193i)20-s     + (0.959 + 1.66i)22-s       + (−0.200 + 0.346i)25-s   + (−1.17 − 0.339i)26-s  + ⋯ | 
 
\[\begin{aligned}\Lambda(s)=\mathstrut & 819 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.617 + 0.786i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 819 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.617 + 0.786i)\, \overline{\Lambda}(1-s) \end{aligned}\]
  Particular Values
  
  
        
      |  \(L(1)\)  | 
            \(\approx\) | 
             \(0.319136 - 0.655852i\)  | 
    
    
      |  \(L(\frac12)\)  | 
            \(\approx\) | 
      
       \(0.319136 - 0.655852i\)  | 
    
    
        
      |  \(L(\frac{3}{2})\)  | 
             | 
       not available  | 
          
    
      |  \(L(1)\)  | 
             | 
       not available  | 
          
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
 | $p$ | $F_p(T)$ | 
|---|
| bad | 3 |  \( 1 \)  | 
 | 7 |  \( 1 + (2 - 1.73i)T \)  | 
 | 13 |  \( 1 + (1 - 3.46i)T \)  | 
| good | 2 |  \( 1 - 1.73iT - 2T^{2} \)  | 
 | 5 |  \( 1 + (1.5 - 0.866i)T + (2.5 - 4.33i)T^{2} \)  | 
 | 11 |  \( 1 + (-4.5 + 2.59i)T + (5.5 - 9.52i)T^{2} \)  | 
 | 17 |  \( 1 + 6T + 17T^{2} \)  | 
 | 19 |  \( 1 + (1.5 + 0.866i)T + (9.5 + 16.4i)T^{2} \)  | 
 | 23 |  \( 1 + 23T^{2} \)  | 
 | 29 |  \( 1 + (-1.5 + 2.59i)T + (-14.5 - 25.1i)T^{2} \)  | 
 | 31 |  \( 1 + (1.5 + 0.866i)T + (15.5 + 26.8i)T^{2} \)  | 
 | 37 |  \( 1 - 37T^{2} \)  | 
 | 41 |  \( 1 + (-4.5 - 2.59i)T + (20.5 + 35.5i)T^{2} \)  | 
 | 43 |  \( 1 + (5.5 + 9.52i)T + (-21.5 + 37.2i)T^{2} \)  | 
 | 47 |  \( 1 + (7.5 - 4.33i)T + (23.5 - 40.7i)T^{2} \)  | 
 | 53 |  \( 1 + (4.5 - 7.79i)T + (-26.5 - 45.8i)T^{2} \)  | 
 | 59 |  \( 1 + 3.46iT - 59T^{2} \)  | 
 | 61 |  \( 1 + (3.5 - 6.06i)T + (-30.5 - 52.8i)T^{2} \)  | 
 | 67 |  \( 1 + (-7.5 + 4.33i)T + (33.5 - 58.0i)T^{2} \)  | 
 | 71 |  \( 1 + (1.5 - 0.866i)T + (35.5 - 61.4i)T^{2} \)  | 
 | 73 |  \( 1 + (-7.5 - 4.33i)T + (36.5 + 63.2i)T^{2} \)  | 
 | 79 |  \( 1 + (-2.5 - 4.33i)T + (-39.5 + 68.4i)T^{2} \)  | 
 | 83 |  \( 1 - 3.46iT - 83T^{2} \)  | 
 | 89 |  \( 1 - 6.92iT - 89T^{2} \)  | 
 | 97 |  \( 1 + (4.5 - 2.59i)T + (48.5 - 84.0i)T^{2} \)  | 
|  show more |  | 
| show less |  | 
 
     \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−11.06709049845491620878135456073, −9.461729995637574624587509159443, −8.948453446334309863323813209684, −8.190635449512192185302554112814, −7.01357712979674356015664310878, −6.58776826406679042434371713455, −5.93909252172588897017274096581, −4.62148873339262435083459410236, −3.63732330252182250802151408991, −2.26337023830520969106912709463, 
0.34478588260048123465662173795, 1.75589269891901704197014499739, 3.12368173493496481052593583461, 4.00596738579580187418725283472, 4.64132726134041391664063347230, 6.44839452299135981570620326070, 6.96341754018864267456351016017, 8.135604531706355311467145654195, 9.208899204394882823047853630766, 9.816880917378445532088554209020