Properties

Label 8-90e8-1.1-c1e4-0-1
Degree $8$
Conductor $4.305\times 10^{15}$
Sign $1$
Analytic cond. $1.75004\times 10^{7}$
Root an. cond. $8.04231$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·19-s + 24·29-s − 4·31-s − 24·41-s + 20·49-s + 24·59-s − 16·61-s − 24·71-s + 16·79-s − 24·101-s + 4·109-s − 38·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 20·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + ⋯
L(s)  = 1  + 0.917·19-s + 4.45·29-s − 0.718·31-s − 3.74·41-s + 20/7·49-s + 3.12·59-s − 2.04·61-s − 2.84·71-s + 1.80·79-s − 2.38·101-s + 0.383·109-s − 3.45·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 1.53·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 3^{16} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 3^{16} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{8} \cdot 3^{16} \cdot 5^{8}\)
Sign: $1$
Analytic conductor: \(1.75004\times 10^{7}\)
Root analytic conductor: \(8.04231\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{8} \cdot 3^{16} \cdot 5^{8} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(1.904025527\)
\(L(\frac12)\) \(\approx\) \(1.904025527\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
good7$D_4\times C_2$ \( 1 - 20 T^{2} + 186 T^{4} - 20 p^{2} T^{6} + p^{4} T^{8} \)
11$C_2^2$ \( ( 1 + 19 T^{2} + p^{2} T^{4} )^{2} \)
13$D_4\times C_2$ \( 1 - 20 T^{2} + 246 T^{4} - 20 p^{2} T^{6} + p^{4} T^{8} \)
17$D_4\times C_2$ \( 1 - 44 T^{2} + 954 T^{4} - 44 p^{2} T^{6} + p^{4} T^{8} \)
19$D_{4}$ \( ( 1 - 2 T + 27 T^{2} - 2 p T^{3} + p^{2} T^{4} )^{2} \)
23$C_2^2$ \( ( 1 - 34 T^{2} + p^{2} T^{4} )^{2} \)
29$D_{4}$ \( ( 1 - 12 T + 91 T^{2} - 12 p T^{3} + p^{2} T^{4} )^{2} \)
31$D_{4}$ \( ( 1 + 2 T + 15 T^{2} + 2 p T^{3} + p^{2} T^{4} )^{2} \)
37$D_4\times C_2$ \( 1 - 92 T^{2} + 4746 T^{4} - 92 p^{2} T^{6} + p^{4} T^{8} \)
41$D_{4}$ \( ( 1 + 12 T + 91 T^{2} + 12 p T^{3} + p^{2} T^{4} )^{2} \)
43$D_4\times C_2$ \( 1 - 116 T^{2} + 6762 T^{4} - 116 p^{2} T^{6} + p^{4} T^{8} \)
47$D_4\times C_2$ \( 1 - 164 T^{2} + 11034 T^{4} - 164 p^{2} T^{6} + p^{4} T^{8} \)
53$D_4\times C_2$ \( 1 - 44 T^{2} + 5130 T^{4} - 44 p^{2} T^{6} + p^{4} T^{8} \)
59$D_{4}$ \( ( 1 - 12 T + 151 T^{2} - 12 p T^{3} + p^{2} T^{4} )^{2} \)
61$C_2$ \( ( 1 + 4 T + p T^{2} )^{4} \)
67$D_4\times C_2$ \( 1 - 20 T^{2} + 2166 T^{4} - 20 p^{2} T^{6} + p^{4} T^{8} \)
71$D_{4}$ \( ( 1 + 12 T + 151 T^{2} + 12 p T^{3} + p^{2} T^{4} )^{2} \)
73$D_4\times C_2$ \( 1 - 188 T^{2} + 16794 T^{4} - 188 p^{2} T^{6} + p^{4} T^{8} \)
79$D_{4}$ \( ( 1 - 8 T + 66 T^{2} - 8 p T^{3} + p^{2} T^{4} )^{2} \)
83$D_4\times C_2$ \( 1 - 20 T^{2} + 8586 T^{4} - 20 p^{2} T^{6} + p^{4} T^{8} \)
89$C_2^2$ \( ( 1 + 151 T^{2} + p^{2} T^{4} )^{2} \)
97$D_4\times C_2$ \( 1 - 380 T^{2} + 54906 T^{4} - 380 p^{2} T^{6} + p^{4} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−5.40528842672002556285390491265, −5.34200831167183200775491970569, −5.17553230044184579934163596062, −4.85672726409979976307751495546, −4.83428259123963801455432860241, −4.62954806244140513454880081954, −4.46196885201826263911358879286, −4.03687227080622406513105036695, −4.02307549549852819407144278773, −3.83911474139558682258485030435, −3.71411330143282053361577324111, −3.21989197836364247643755961681, −3.19946138318874930605478935298, −2.97206610722112583193702064000, −2.88771833616276332180968625895, −2.59190134347928429341286424265, −2.36772493154904317298346078560, −2.15401280280324063304424457901, −1.96559437160426288413765850720, −1.54321194333131325202879722906, −1.28545367012722313446893825016, −1.11737561732758244511718546820, −1.00600560768580006345935959345, −0.56443098735172459396247610140, −0.16648636980915045512913289406, 0.16648636980915045512913289406, 0.56443098735172459396247610140, 1.00600560768580006345935959345, 1.11737561732758244511718546820, 1.28545367012722313446893825016, 1.54321194333131325202879722906, 1.96559437160426288413765850720, 2.15401280280324063304424457901, 2.36772493154904317298346078560, 2.59190134347928429341286424265, 2.88771833616276332180968625895, 2.97206610722112583193702064000, 3.19946138318874930605478935298, 3.21989197836364247643755961681, 3.71411330143282053361577324111, 3.83911474139558682258485030435, 4.02307549549852819407144278773, 4.03687227080622406513105036695, 4.46196885201826263911358879286, 4.62954806244140513454880081954, 4.83428259123963801455432860241, 4.85672726409979976307751495546, 5.17553230044184579934163596062, 5.34200831167183200775491970569, 5.40528842672002556285390491265

Graph of the $Z$-function along the critical line