| L(s) = 1 | + (−0.866 + 0.5i)2-s + (0.499 − 0.866i)4-s + (−2.23 − 0.133i)5-s + (−3.46 + 2i)7-s + 0.999i·8-s + (1.99 − i)10-s + (−2.5 − 4.33i)11-s + (2.59 + 1.5i)13-s + (1.99 − 3.46i)14-s + (−0.5 − 0.866i)16-s − i·17-s + 6·19-s + (−1.23 + 1.86i)20-s + (4.33 + 2.5i)22-s + (−0.866 − 0.5i)23-s + ⋯ |
| L(s) = 1 | + (−0.612 + 0.353i)2-s + (0.249 − 0.433i)4-s + (−0.998 − 0.0599i)5-s + (−1.30 + 0.755i)7-s + 0.353i·8-s + (0.632 − 0.316i)10-s + (−0.753 − 1.30i)11-s + (0.720 + 0.416i)13-s + (0.534 − 0.925i)14-s + (−0.125 − 0.216i)16-s − 0.242i·17-s + 1.37·19-s + (−0.275 + 0.417i)20-s + (0.923 + 0.533i)22-s + (−0.180 − 0.104i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 810 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.993 - 0.114i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 810 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.993 - 0.114i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.701738 + 0.0402472i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.701738 + 0.0402472i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (0.866 - 0.5i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (2.23 + 0.133i)T \) |
| good | 7 | \( 1 + (3.46 - 2i)T + (3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (2.5 + 4.33i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (-2.59 - 1.5i)T + (6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + iT - 17T^{2} \) |
| 19 | \( 1 - 6T + 19T^{2} \) |
| 23 | \( 1 + (0.866 + 0.5i)T + (11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-4.5 - 7.79i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (-2.5 + 4.33i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 - 2iT - 37T^{2} \) |
| 41 | \( 1 + (1 - 1.73i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-0.866 + 0.5i)T + (21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-11.2 + 6.5i)T + (23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 - 53T^{2} \) |
| 59 | \( 1 + (-2 + 3.46i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (4 + 6.92i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (3.46 + 2i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 6T + 71T^{2} \) |
| 73 | \( 1 + 2iT - 73T^{2} \) |
| 79 | \( 1 + (-4.5 - 7.79i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-3.46 + 2i)T + (41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + 14T + 89T^{2} \) |
| 97 | \( 1 + (-8.66 + 5i)T + (48.5 - 84.0i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.18326384083530758732037907837, −9.178784425528731829032300811439, −8.630747143905917356925403220439, −7.82835925124504963353508608802, −6.84652879546366066660465707507, −6.03979768306878775210534390471, −5.15245874821136837747524187016, −3.55459662778451630863306637633, −2.85713809642824637269763380975, −0.67387621334735811500964198602,
0.802072659257077854794451982425, 2.74156307016556199733257937344, 3.62128093636301350650063934230, 4.54301729585982935162908124043, 6.05398288366295894766321756352, 7.20411872753956148714103964363, 7.53246042984797751155590429272, 8.528391657347319940429168123871, 9.620337672341380705805123084841, 10.19555094637498824679483833363