Properties

Degree $2$
Conductor $810$
Sign $-0.803 - 0.595i$
Motivic weight $1$
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.866 − 0.5i)2-s + (0.499 + 0.866i)4-s + (−0.133 − 2.23i)5-s + (−1.73 − i)7-s − 0.999i·8-s + (−1 + 1.99i)10-s + (1 − 1.73i)11-s + (−5.19 + 3i)13-s + (0.999 + 1.73i)14-s + (−0.5 + 0.866i)16-s − 2i·17-s + (1.86 − 1.23i)20-s + (−1.73 + 0.999i)22-s + (−3.46 + 2i)23-s + (−4.96 + 0.598i)25-s + 6·26-s + ⋯
L(s)  = 1  + (−0.612 − 0.353i)2-s + (0.249 + 0.433i)4-s + (−0.0599 − 0.998i)5-s + (−0.654 − 0.377i)7-s − 0.353i·8-s + (−0.316 + 0.632i)10-s + (0.301 − 0.522i)11-s + (−1.44 + 0.832i)13-s + (0.267 + 0.462i)14-s + (−0.125 + 0.216i)16-s − 0.485i·17-s + (0.417 − 0.275i)20-s + (−0.369 + 0.213i)22-s + (−0.722 + 0.417i)23-s + (−0.992 + 0.119i)25-s + 1.17·26-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 810 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.803 - 0.595i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 810 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.803 - 0.595i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(810\)    =    \(2 \cdot 3^{4} \cdot 5\)
Sign: $-0.803 - 0.595i$
Motivic weight: \(1\)
Character: $\chi_{810} (379, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 810,\ (\ :1/2),\ -0.803 - 0.595i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.0495725 + 0.150047i\)
\(L(\frac12)\) \(\approx\) \(0.0495725 + 0.150047i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.866 + 0.5i)T \)
3 \( 1 \)
5 \( 1 + (0.133 + 2.23i)T \)
good7 \( 1 + (1.73 + i)T + (3.5 + 6.06i)T^{2} \)
11 \( 1 + (-1 + 1.73i)T + (-5.5 - 9.52i)T^{2} \)
13 \( 1 + (5.19 - 3i)T + (6.5 - 11.2i)T^{2} \)
17 \( 1 + 2iT - 17T^{2} \)
19 \( 1 + 19T^{2} \)
23 \( 1 + (3.46 - 2i)T + (11.5 - 19.9i)T^{2} \)
29 \( 1 + (-14.5 - 25.1i)T^{2} \)
31 \( 1 + (-4 - 6.92i)T + (-15.5 + 26.8i)T^{2} \)
37 \( 1 - 2iT - 37T^{2} \)
41 \( 1 + (-1 - 1.73i)T + (-20.5 + 35.5i)T^{2} \)
43 \( 1 + (3.46 + 2i)T + (21.5 + 37.2i)T^{2} \)
47 \( 1 + (6.92 + 4i)T + (23.5 + 40.7i)T^{2} \)
53 \( 1 - 6iT - 53T^{2} \)
59 \( 1 + (5 + 8.66i)T + (-29.5 + 51.0i)T^{2} \)
61 \( 1 + (1 - 1.73i)T + (-30.5 - 52.8i)T^{2} \)
67 \( 1 + (6.92 - 4i)T + (33.5 - 58.0i)T^{2} \)
71 \( 1 + 12T + 71T^{2} \)
73 \( 1 - 4iT - 73T^{2} \)
79 \( 1 + (-39.5 - 68.4i)T^{2} \)
83 \( 1 + (-3.46 - 2i)T + (41.5 + 71.8i)T^{2} \)
89 \( 1 + 10T + 89T^{2} \)
97 \( 1 + (-6.92 - 4i)T + (48.5 + 84.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.691650129231506761982155647375, −9.053470736315173201399896386020, −8.204656042193831365106203067425, −7.26943802593790705951199392955, −6.43385647378588617098655425467, −5.12939463696529160850278545433, −4.20432973635725800949346151524, −3.01972959333313213593525001656, −1.59464547805471948132622686554, −0.091413956349506470307452914209, 2.17890744469028945495890594484, 3.10341379116708057205929908035, 4.52330383227847479585652771621, 5.85438300087007503244714141412, 6.47949295941319424134878707995, 7.43395902468856121834926917469, 7.990012882917082860832994589526, 9.237050423315198991024725686187, 9.989861149836485816101968818152, 10.35443652003373093948879808569

Graph of the $Z$-function along the critical line