Properties

Degree $2$
Conductor $810$
Sign $-0.173 - 0.984i$
Motivic weight $1$
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (0.5 + 0.866i)2-s + (−0.499 + 0.866i)4-s + (0.5 − 0.866i)5-s + (2 + 3.46i)7-s − 0.999·8-s + 0.999·10-s + (−1 + 1.73i)13-s + (−1.99 + 3.46i)14-s + (−0.5 − 0.866i)16-s + 6·17-s − 4·19-s + (0.499 + 0.866i)20-s + (−0.499 − 0.866i)25-s − 1.99·26-s − 3.99·28-s + (3 + 5.19i)29-s + ⋯
L(s)  = 1  + (0.353 + 0.612i)2-s + (−0.249 + 0.433i)4-s + (0.223 − 0.387i)5-s + (0.755 + 1.30i)7-s − 0.353·8-s + 0.316·10-s + (−0.277 + 0.480i)13-s + (−0.534 + 0.925i)14-s + (−0.125 − 0.216i)16-s + 1.45·17-s − 0.917·19-s + (0.111 + 0.193i)20-s + (−0.0999 − 0.173i)25-s − 0.392·26-s − 0.755·28-s + (0.557 + 0.964i)29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 810 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.173 - 0.984i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 810 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.173 - 0.984i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(810\)    =    \(2 \cdot 3^{4} \cdot 5\)
Sign: $-0.173 - 0.984i$
Motivic weight: \(1\)
Character: $\chi_{810} (271, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 810,\ (\ :1/2),\ -0.173 - 0.984i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.24395 + 1.48248i\)
\(L(\frac12)\) \(\approx\) \(1.24395 + 1.48248i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.5 - 0.866i)T \)
3 \( 1 \)
5 \( 1 + (-0.5 + 0.866i)T \)
good7 \( 1 + (-2 - 3.46i)T + (-3.5 + 6.06i)T^{2} \)
11 \( 1 + (-5.5 + 9.52i)T^{2} \)
13 \( 1 + (1 - 1.73i)T + (-6.5 - 11.2i)T^{2} \)
17 \( 1 - 6T + 17T^{2} \)
19 \( 1 + 4T + 19T^{2} \)
23 \( 1 + (-11.5 - 19.9i)T^{2} \)
29 \( 1 + (-3 - 5.19i)T + (-14.5 + 25.1i)T^{2} \)
31 \( 1 + (4 - 6.92i)T + (-15.5 - 26.8i)T^{2} \)
37 \( 1 - 2T + 37T^{2} \)
41 \( 1 + (-3 + 5.19i)T + (-20.5 - 35.5i)T^{2} \)
43 \( 1 + (-2 - 3.46i)T + (-21.5 + 37.2i)T^{2} \)
47 \( 1 + (-23.5 + 40.7i)T^{2} \)
53 \( 1 + 6T + 53T^{2} \)
59 \( 1 + (-29.5 - 51.0i)T^{2} \)
61 \( 1 + (-5 - 8.66i)T + (-30.5 + 52.8i)T^{2} \)
67 \( 1 + (-2 + 3.46i)T + (-33.5 - 58.0i)T^{2} \)
71 \( 1 + 71T^{2} \)
73 \( 1 - 2T + 73T^{2} \)
79 \( 1 + (4 + 6.92i)T + (-39.5 + 68.4i)T^{2} \)
83 \( 1 + (6 + 10.3i)T + (-41.5 + 71.8i)T^{2} \)
89 \( 1 - 18T + 89T^{2} \)
97 \( 1 + (1 + 1.73i)T + (-48.5 + 84.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.45770751965996309667976196006, −9.325404034830167114243670308657, −8.705987934118008975145398882829, −8.011981354759810871286767422460, −6.99087303284686748225062307712, −5.88353665570418327874869283063, −5.29301769457329521211234513986, −4.45189103795127144186774679254, −3.03765476391786451010987420524, −1.73529111796142686112091867168, 0.924757195414022668683002173340, 2.30541681834631813823315145256, 3.59005531724299466822096762104, 4.39869126149824189045523808247, 5.43089450887056725507891590063, 6.43946004256827292668174466088, 7.59350777553213198521671635243, 8.107344393380012462247919653855, 9.564595486171175393148115127894, 10.16869856628037836559569037510

Graph of the $Z$-function along the critical line